-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathflashcards.tex
239 lines (203 loc) · 6.61 KB
/
flashcards.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
\documentclass[avery5371]{flashcards}
\usepackage{defaults-utilities}
\usepackage{defaults-fonts}
\usepackage{defaults-math}
\usepackage{defaults-layout}
\title{University of Minnesota Physics GWE Flashcards}
\author{Justin Willmert}
\begin{document}
\cardfrontstyle{headings}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Electrodynamics
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cardfrontfoot{Electrodynamics}
\begin{flashcard}{Electrical component voltages}
\begin{align*}
V &= IR & V = \frac{Q}{C} \\
V &= L\frac{dI}{dt}
\end{align*}
\end{flashcard}
\begin{flashcard}{Maxwell's Equations (Guassian)}
\begin{align*}
\vec ∇ · \vec D &= 4πρ_f
& \vec ∇ × \vec E &= -\frac 1c \frac{∂\vec B}{∂t}
\\
\vec ∇ · \vec B &= 0
& \vec ∇ × \vec H &= \frac 1c ( \frac{∂\vec D}{∂t} + 4π \vec{J_f} )
\end{align*}
\end{flashcard}
\begin{flashcard}{Maxwell's Equations (SI)}
\begin{align*}
\vec ∇ · \vec D &= ρ_f
& \vec ∇ × \vec E &= -\frac{∂\vec B}{∂t}
\\
\vec ∇ · \vec B &= 0
& \vec ∇ × \vec H &= \frac{∂\vec D}{∂t} + \vec{J_f}
\end{align*}
\end{flashcard}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% General Math
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cardfrontfoot{General Math}
\begin{flashcard}{Gaussian Integrals}
\begin{align*}
I_n(x) = \!\! ∫_0^∞ \!\! x^n e^{-ax²} dx &=
\begin{cases}
\displaystyle
\frac{1}{2} \sqrt{\frac{π}{a^{m+1}}} \frac{(2m)!}{4^m m!}
& \text{$n = 2m$} \\
\displaystyle
\frac{1}{2} \frac{1}{a^{k+1}} k!
& \text{$n = 2k + 1$}
\end{cases}
\end{align*}
\vspace{-\baselineskip}
\begin{align*}
I₀(x) &= \frac 12 \sqrt{\frac π a}
& I₁(x) &= \frac 1 {2a} \\
I₂(x) &= \frac{1}{4a} \sqrt{\frac π a}
& I₃(x) &= \frac 1 {2a²}
\end{align*}
\end{flashcard}
\begin{flashcard}{Geometric Series}
\begin{align*}
\sum_{i=0}^N r^i &= \frac{1 - r^{N+1}}{1 - r} \\
\sum_{i=0}^∞ r^i &= \frac{1}{1 - r}
\end{align*}
\end{flashcard}
\begin{flashcard}{Stirling's Approximation}
\[ n! ≈ (\frac ne)^n \sqrt{2πn} \] \\
\[ \ln n! ≈ n\ln n - n \]
\end{flashcard}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% MECHANICS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cardfrontfoot{Mechanics}
\begin{flashcard}{Bernoulli's equation}
\[ \frac{v²}{2} + gz + \frac{p}{ρ} = \text{constant} \]
\end{flashcard}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% THERMODYNAMICS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cardfrontfoot{Thermodynamics}
\begin{flashcard}{Adiabatic Process}
Also called \emph{isentropic}. $ΔS = 0$ in the process. Use the
thermodynamic identity at constant volume and a systems internal energy
equation to derive properties about the entropy of the system.
\end{flashcard}
\begin{flashcard}{Adiabatic Properties of Ideal Gas}
\begin{align*}
T₁ {V₁}^{γ-1} &= \text{const} \\
{T₁}^{γ/(1-γ)} P₁ &= \text{const} \\
P₁ {V₁}^γ &= \text{const}
\end{align*}
\end{flashcard}
\begin{flashcard}{Bose-Einstein Distribution}
\[ f(ε) = \frac{1}{e^{(ε-μ)/k_B T} - 1} \]
\end{flashcard}
\begin{flashcard}{Carnot Efficiency}
\[ η = 1 - \frac{T_l}{T_h} \]
\end{flashcard}
\begin{flashcard}{Carnot Cycle}
Characterized by alternating stages of isothermal and isentropic expansion
and compression. Work done is
\[ W = (T_h - T_l)(S_H - S_L) \]
where $T_l$ and $T_h$ are the low and high temperatures reached during the
cycle and $S_L$ and $S_H$ are the low and high entropies of the working
substance.
\end{flashcard}
\begin{flashcard}{Equipartition Theorem}
A classical gas's energy gains $\frac 12 k_B T$ for each degree of
freedom. An ideal monotomic gas has
$ U = \frac 32 k_B T $
from three translational degrees of freedom, while an ideal diatomic gas
has
$ U = \frac 52 k_B T $
from an additional two degrees of rotational freedom.
\end{flashcard}
\begin{flashcard}{Fermi Gasses}
\begin{enumerate}
\item High kinetic energy
\item Low heat capacity
\item Low magnetic susceptibility
\item Low interparticle collision rate
\item High pressure
\end{enumerate}
\end{flashcard}
\begin{flashcard}{Fermi-Dirac Distribution}
\[ f(ε) = \frac{1}{e^{(ε-μ)/k_B T} + 1} \]
\end{flashcard}
\begin{flashcard}{Gibbs Free Energy}
\[ G ≡ U + PV - TS \]
\end{flashcard}
\begin{flashcard}{Helmholtz Free Energy}
Acts as effective energy in isothermal changes of volume.
\[ F ≡ U - TS \]
\[ dF = dU - S dT \]
\end{flashcard}
\begin{flashcard}{Ideal Gasses}
\[ PV = nRT \]
\[ PV = N k_B T \]
\[ Z_N = \frac{Z₁^N}{N!} \]
\end{flashcard}
\begin{flashcard}{Ideal Gas (RMS Average Speed)}
Derived by considering a single particle. For translation in three
dimensions $KE = \frac 32 k_B T$ and also $KE = \frac 12 mv²$ so that
when combined,
\begin{align*}
\frac 12 mv² &= \frac 32 k_B T \\
v &= \sqrt{\frac{3 k_B T}{m}}
\end{align*}
\end{flashcard}
\begin{flashcard}{Ideal Monoatomic Gas}
\begin{align*}
C_V &= \frac 32 Nk_B
& C_P &= \frac 52 Nk_B \\
U &= \frac 32 Nk_B T
& γ &= \frac 53
\end{align*}
\end{flashcard}
\begin{flashcard}{Maxwell Speed Distribution}
\[ f(v) = \sqrt{ (\frac{m}{2π k_B T})³ } 4πv² \exp(-\frac{mv²}{2k_B T}) \]
\begin{align*}
v_\mathrm{rms} &= \sqrt{\frac{3k_B T}{m}}
& ⟨v⟩ &= \sqrt{\frac{8k_B T}{πm}}
\end{align*}
\end{flashcard}
\begin{flashcard}{Partition Function}
\[ Z = \sum_n e^{-ε_n / k_B T} \]
\begin{align*}
U &= k_B T² \frac{∂ \ln Z}{∂T}
& F = -k_B T \ln Z
\end{align*}
\end{flashcard}
\begin{flashcard}{Photon Gasses}
\[ U = σ_b VT⁴ \]
\[ P = \frac 13 σ_b VT⁴ \]
\[ μ = 0 \]
\end{flashcard}
\begin{flashcard}{Planck Distribution function}
\[ ⟨s⟩ = \frac{1}{e^{ℏω/k_B T} - 1} \]
\end{flashcard}
\begin{flashcard}{Planck Spectral Density (frequency)}
\[ u_ω = \frac{ℏ}{π²c³} \frac{ω³}{e^{ℏω/k_B T} - 1} \]
\end{flashcard}
\begin{flashcard}{Radiant Energy Flux (blackbody)}
\[ J_u = \frac{π²{k_B}⁴}{60ℏ³c²} T⁴ \]
\[ J_u = \frac{c}{4} u \]
\end{flashcard}
\begin{flashcard}{Stefan-Boltzmann Law (energy density)}
\begin{align*}
\frac{U}{V} = u &= \frac{π²{k_B}³}{15ℏ³c³} T⁴ \\
u &= σ_B T⁴
\end{align*}
\[ u = \frac{4}{c} J_u \]
\end{flashcard}
\begin{flashcard}{Thermodynamic Identity}
\[ dU = T dS - P dV + μ dN \]
\begin{align*}
C_V &= (\frac{∂U}{∂T})_V = T (\frac{∂S}{∂T})_V
& P = -(\frac{∂U}{∂V})_S
\end{align*}
\end{flashcard}
\end{document}