-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjob_shop_example.py
123 lines (101 loc) · 4.49 KB
/
job_shop_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import collections
from ortools.sat.python import cp_model
def main():
"""Minimal jobshop problem."""
# Data.
jobs_data = [ # task = (machine_id, processing_time).
[(0, 3), (1, 2), (2, 2)], # Job0
[(0, 2), (2, 1), (1, 4)], # Job1
[(1, 4), (2, 3)] # Job2
]
machines_count = 1 + max(task[0] for job in jobs_data for task in job)
all_machines = range(machines_count)
# Computes horizon dynamically as the sum of all durations.
horizon = sum(task[1] for job in jobs_data for task in job)
# Create the model.
model = cp_model.CpModel()
# Named tuple to store information about created variables.
task_type = collections.namedtuple('task_type', 'start end interval')
# Named tuple to manipulate solution information.
assigned_task_type = collections.namedtuple('assigned_task_type',
'start job index duration')
# Creates job intervals and add to the corresponding machine lists.
all_tasks = {}
machine_to_intervals = collections.defaultdict(list)
for job_id, job in enumerate(jobs_data):
for task_id, task in enumerate(job):
machine = task[0]
duration = task[1]
suffix = '_%i_%i' % (job_id, task_id)
start_var = model.NewIntVar(0, horizon, 'start' + suffix)
end_var = model.NewIntVar(0, horizon, 'end' + suffix)
interval_var = model.NewIntervalVar(start_var, duration, end_var,
'interval' + suffix)
all_tasks[job_id, task_id] = task_type(start=start_var,
end=end_var,
interval=interval_var)
machine_to_intervals[machine].append(interval_var)
# Create and add disjunctive constraints.
for machine in all_machines:
model.AddNoOverlap(machine_to_intervals[machine])
# Precedences inside a job.
for job_id, job in enumerate(jobs_data):
for task_id in range(len(job) - 1):
model.Add(all_tasks[job_id, task_id +
1].start >= all_tasks[job_id, task_id].end)
# Makespan objective.
obj_var = model.NewIntVar(0, horizon, 'makespan')
model.AddMaxEquality(obj_var, [
all_tasks[job_id, len(job) - 1].end
for job_id, job in enumerate(jobs_data)
])
model.Minimize(obj_var)
# Creates the solver and solve.
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
print('Solution:')
# Create one list of assigned tasks per machine.
assigned_jobs = collections.defaultdict(list)
for job_id, job in enumerate(jobs_data):
for task_id, task in enumerate(job):
machine = task[0]
assigned_jobs[machine].append(
assigned_task_type(start=solver.Value(
all_tasks[job_id, task_id].start),
job=job_id,
index=task_id,
duration=task[1]))
# Create per machine output lines.
output = ''
for machine in all_machines:
# Sort by starting time.
assigned_jobs[machine].sort()
sol_line_tasks = 'Machine ' + str(machine) + ': '
sol_line = ' '
for assigned_task in assigned_jobs[machine]:
name = 'job_%i_task_%i' % (assigned_task.job,
assigned_task.index)
# Add spaces to output to align columns.
sol_line_tasks += '%-15s' % name
start = assigned_task.start
duration = assigned_task.duration
sol_tmp = '[%i,%i]' % (start, start + duration)
# Add spaces to output to align columns.
sol_line += '%-15s' % sol_tmp
sol_line += '\n'
sol_line_tasks += '\n'
output += sol_line_tasks
output += sol_line
# Finally print the solution found.
print(f'Optimal Schedule Length: {solver.ObjectiveValue()}')
print(output)
else:
print('No solution found.')
# Statistics.
print('\nStatistics')
print(' - conflicts: %i' % solver.NumConflicts())
print(' - branches : %i' % solver.NumBranches())
print(' - wall time: %f s' % solver.WallTime())
if __name__ == '__main__':
main()