-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
30 lines (27 loc) · 1.54 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from keras.models import Sequential
from keras.layers import Flatten, Dense, Lambda, Conv2D, Cropping2D, Dropout, \
Reshape, BatchNormalization, ELU, MaxPooling2D
from keras.optimizers import Adam
def cnn_model():
model = Sequential()
model.add(Conv2D(12, (5, 5), activation='elu', input_shape=(240, 320, 3), kernel_initializer='he_normal'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(24, (5, 5), activation='elu', padding='SAME', kernel_initializer='he_normal'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(36, (3, 3), activation='elu', kernel_initializer='he_normal'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(48, (3, 3), activation='elu', kernel_initializer='he_normal'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(64, (3, 3), strides=(1, 1), kernel_initializer='he_normal'))
model.add(ELU())
model.add(Dropout(0.5))
model.add(Conv2D(60, (3, 3), strides=(1, 1), padding='valid', activation='elu', kernel_initializer='he_normal'))
model.add(Flatten())
model.add(Dense(1164, activation='elu'))
model.add(Dense(100, kernel_initializer='he_normal', activation='elu'))
model.add(Dense(50, kernel_initializer='he_normal', activation='elu'))
model.add(Dense(10, kernel_initializer='he_normal', activation='elu'))
model.add(Dense(1, kernel_initializer='he_normal', activation='elu'))
adam = Adam(lr=1e-3)
model.compile(optimizer=adam, loss='mse')
return model