-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathApplication.py
49 lines (39 loc) · 1.8 KB
/
Application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from flask import Flask, render_template, request
import pickle
import numpy as np
import pandas as pd
#popular_df = pickle.load(open('popular_book.pkl', 'rb'))
popular_df = pd.read_pickle('popular_book.pkl')
pt = pickle.load(open('pivot_table.pkl', 'rb'))
books = pickle.load(open('books.pkl', 'rb'))
similarity_scores = pickle.load(open('similarity_score.pkl', 'rb'))
application = Flask(__name__,template_folder='template')
@application.route('/')
def index():
return render_template('index.html',
book_name=list(popular_df['Book-Title'].values),
author=list(popular_df['Book-Author'].values),
image=list(popular_df['Image-URL-M'].values),
votes=list(popular_df['num_rating'].values),
rating=list(popular_df['avg_rating'].values)
)
@application.route('/recommendation')
def recommend_ui():
return render_template('recommendation.html')
@application.route('/recommend_books',methods=['post'])
def recommend():
user_input = request.form.get('user_input')
index = np.where(pt.index == user_input)[0][0]
similar_items = sorted(list(enumerate(similarity_scores[index])), key=lambda x: x[1], reverse=True)[1:5]
data = []
for i in similar_items:
item = []
temp_df = books[books['Book-Title'] == pt.index[i[0]]]
item.extend(list(temp_df.drop_duplicates('Book-Title')['Book-Title'].values))
item.extend(list(temp_df.drop_duplicates('Book-Title')['Book-Author'].values))
item.extend(list(temp_df.drop_duplicates('Book-Title')['Image-URL-M'].values))
data.append(item)
print(data)
return render_template('recommendation.html',data=data)
if __name__ == '__main__':
application.run(debug=True)