forked from speaches-ai/speaches
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
266 lines (239 loc) · 7.62 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import enum
from pydantic import BaseModel, Field
from pydantic_settings import BaseSettings, SettingsConfigDict
SAMPLES_PER_SECOND = 16000
BYTES_PER_SAMPLE = 2
BYTES_PER_SECOND = SAMPLES_PER_SECOND * BYTES_PER_SAMPLE
# 2 BYTES = 16 BITS = 1 SAMPLE
# 1 SECOND OF AUDIO = 32000 BYTES = 16000 SAMPLES
# https://platform.openai.com/docs/api-reference/audio/createTranscription#audio-createtranscription-response_format
class ResponseFormat(enum.StrEnum):
TEXT = "text"
JSON = "json"
VERBOSE_JSON = "verbose_json"
SRT = "srt"
VTT = "vtt"
class Device(enum.StrEnum):
CPU = "cpu"
CUDA = "cuda"
AUTO = "auto"
# https://github.com/OpenNMT/CTranslate2/blob/master/docs/quantization.md
class Quantization(enum.StrEnum):
INT8 = "int8"
INT8_FLOAT16 = "int8_float16"
INT8_BFLOAT16 = "int8_bfloat16"
INT8_FLOAT32 = "int8_float32"
INT16 = "int16"
FLOAT16 = "float16"
BFLOAT16 = "bfloat16"
FLOAT32 = "float32"
DEFAULT = "default"
# TODO: this needs to be rethought
class Language(enum.StrEnum):
AF = "af"
AM = "am"
AR = "ar"
AS = "as"
AZ = "az"
BA = "ba"
BE = "be"
BG = "bg"
BN = "bn"
BO = "bo"
BR = "br"
BS = "bs"
CA = "ca"
CS = "cs"
CY = "cy"
DA = "da"
DE = "de"
EL = "el"
EN = "en"
ES = "es"
ET = "et"
EU = "eu"
FA = "fa"
FI = "fi"
FO = "fo"
FR = "fr"
GL = "gl"
GU = "gu"
HA = "ha"
HAW = "haw"
HE = "he"
HI = "hi"
HR = "hr"
HT = "ht"
HU = "hu"
HY = "hy"
ID = "id"
IS = "is"
IT = "it"
JA = "ja"
JW = "jw"
KA = "ka"
KK = "kk"
KM = "km"
KN = "kn"
KO = "ko"
LA = "la"
LB = "lb"
LN = "ln"
LO = "lo"
LT = "lt"
LV = "lv"
MG = "mg"
MI = "mi"
MK = "mk"
ML = "ml"
MN = "mn"
MR = "mr"
MS = "ms"
MT = "mt"
MY = "my"
NE = "ne"
NL = "nl"
NN = "nn"
NO = "no"
OC = "oc"
PA = "pa"
PL = "pl"
PS = "ps"
PT = "pt"
RO = "ro"
RU = "ru"
SA = "sa"
SD = "sd"
SI = "si"
SK = "sk"
SL = "sl"
SN = "sn"
SO = "so"
SQ = "sq"
SR = "sr"
SU = "su"
SV = "sv"
SW = "sw"
TA = "ta"
TE = "te"
TG = "tg"
TH = "th"
TK = "tk"
TL = "tl"
TR = "tr"
TT = "tt"
UK = "uk"
UR = "ur"
UZ = "uz"
VI = "vi"
YI = "yi"
YO = "yo"
YUE = "yue"
ZH = "zh"
class Task(enum.StrEnum):
TRANSCRIBE = "transcribe"
TRANSLATE = "translate"
class WhisperConfig(BaseModel):
"""See https://github.com/SYSTRAN/faster-whisper/blob/master/faster_whisper/transcribe.py#L599."""
model: str = Field(default="Systran/faster-whisper-small")
"""
Default HuggingFace model to use for transcription. Note, the model must support being ran using CTranslate2.
This model will be used if no model is specified in the request.
Models created by authors of `faster-whisper` can be found at https://huggingface.co/Systran
You can find other supported models at https://huggingface.co/models?p=2&sort=trending&search=ctranslate2 and https://huggingface.co/models?sort=trending&search=ct2
"""
inference_device: Device = Field(default=Device.AUTO)
device_index: int | list[int] = 0
compute_type: Quantization = Field(default=Quantization.DEFAULT)
cpu_threads: int = 0
num_workers: int = 1
ttl: int = Field(default=300, ge=-1)
"""
Time in seconds until the model is unloaded if it is not being used.
-1: Never unload the model.
0: Unload the model immediately after usage.
"""
use_batched_mode: bool = False
"""
Whether to use batch mode(introduced in 1.1.0 `faster-whisper` release) for inference. This will likely become the default in the future and the configuration option will be removed.
""" # noqa: E501
# TODO: document `alias` behaviour within the docstring
class Config(BaseSettings):
"""Configuration for the application. Values can be set via environment variables.
Pydantic will automatically handle mapping uppercased environment variables to the corresponding fields.
To populate nested, the environment should be prefixed with the nested field name and an underscore. For example,
the environment variable `LOG_LEVEL` will be mapped to `log_level`, `WHISPER__MODEL`(note the double underscore) to `whisper.model`, to set quantization to int8, use `WHISPER__COMPUTE_TYPE=int8`, etc.
""" # noqa: E501
model_config = SettingsConfigDict(env_nested_delimiter="__")
api_key: str | None = None
"""
If set, the API key will be required for all requests.
"""
log_level: str = "debug"
"""
Logging level. One of: 'debug', 'info', 'warning', 'error', 'critical'.
"""
host: str = Field(alias="UVICORN_HOST", default="0.0.0.0")
port: int = Field(alias="UVICORN_PORT", default=8000)
allow_origins: list[str] | None = None
"""
https://docs.pydantic.dev/latest/concepts/pydantic_settings/#parsing-environment-variable-values
Usage:
`export ALLOW_ORIGINS='["http://localhost:3000", "http://localhost:3001"]'`
`export ALLOW_ORIGINS='["*"]'`
"""
enable_ui: bool = True
"""
Whether to enable the Gradio UI. You may want to disable this if you want to minimize the dependencies and slightly improve the startup time.
""" # noqa: E501
default_language: Language | None = None
"""
Default language to use for transcription. If not set, the language will be detected automatically.
It is recommended to set this as it will improve the performance.
"""
default_response_format: ResponseFormat = ResponseFormat.JSON
whisper: WhisperConfig = WhisperConfig()
preload_models: list[str] = Field(
default_factory=list,
examples=[
["Systran/faster-whisper-small"],
["Systran/faster-whisper-medium.en", "Systran/faster-whisper-small.en"],
],
)
"""
List of Whisper models to preload on startup. By default, the model is first loaded on first request.
WARNING: I'd recommend not setting this, as it may be deprecated in the future.
"""
max_no_data_seconds: float = 1.0
"""
Max duration to wait for the next audio chunk before transcription is finilized and connection is closed.
Used only for live transcription (WS /v1/audio/transcriptions).
"""
min_duration: float = 1.0
"""
Minimum duration of an audio chunk that will be transcribed.
Used only for live transcription (WS /v1/audio/transcriptions).
"""
word_timestamp_error_margin: float = 0.2
"""
Used only for live transcription (WS /v1/audio/transcriptions).
"""
max_inactivity_seconds: float = 2.5
"""
Max allowed audio duration without any speech being detected before transcription is finilized and connection is closed.
Used only for live transcription (WS /v1/audio/transcriptions).
""" # noqa: E501
inactivity_window_seconds: float = 5.0
"""
Controls how many latest seconds of audio are being passed through VAD. Should be greater than `max_inactivity_seconds`.
Used only for live transcription (WS /v1/audio/transcriptions).
""" # noqa: E501
# NOTE: options below are not used yet and should be ignored. Added as a placeholder for future features I'm currently working on. # noqa: E501
chat_completion_base_url: str = "https://api.openai.com/v1"
chat_completion_api_key: str | None = None
speech_base_url: str | None = None
speech_api_key: str | None = None
speech_model: str = "piper"
speech_extra_body: dict = {"sample_rate": 24000}
transcription_base_url: str | None = None
transcription_api_key: str | None = None