Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

More external refs #62

Merged
merged 2 commits into from
Dec 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions include/kyosu/functions/abs.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,9 @@ namespace kyosu
//! The modulus is the square root of the sum of the squares of the absolute value of each component.
//! 2. With the raw option no provision is made to enhance accuracy and avoid overflows
//!
//! @groupheader{External references}
//! * [C++ standard reference: complex abs](https://en.cppreference.com/w/cpp/numeric/complex/abs)
//!
//! @groupheader{Example}
//! @godbolt{doc/abs.cpp}
//======================================================================================================================
Expand Down
1 change: 0 additions & 1 deletion include/kyosu/functions/beta.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,6 @@ namespace kyosu
//! * [Wolfram MathWorld: Beta Function](https://mathworld.wolfram.com/BetaFunction.html)
//!
//! @groupheader{Example}
//!
//! @godbolt{doc/beta.cpp}
//======================================================================================================================
inline constexpr auto beta = eve::functor<beta_t>;
Expand Down
4 changes: 3 additions & 1 deletion include/kyosu/functions/deta.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -61,8 +61,10 @@ namespace kyosu
//!
//! Returns the Dirichlet sum \f$ \displaystyle \sum_{n = 0}^\infty \frac{(-1)^n}{(kn+1)^z}\f$
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wikipedia: Dirichlet series](https://en.wikipedia.org/wiki/Dirichlet_series)
//!
//! @groupheader{Example}
//! @godbolt{doc/deta.cpp}
//======================================================================================================================
inline constexpr auto deta = eve::functor<deta_t>;
Expand Down
4 changes: 3 additions & 1 deletion include/kyosu/functions/digamma.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -57,8 +57,10 @@ namespace kyosu
//!
//! The value of the Digamma function: \f$\frac{\Gamma'(z)}{\Gamma(z)}\f$ is returned.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wikipedia: Digamma function](https://en.wikipedia.org/wiki/Digamma_function)
//!
//! @groupheader{Example}
//! @godbolt{doc/digamma.cpp}
//======================================================================================================================
inline constexpr auto digamma = eve::functor<digamma_t>;
Expand Down
6 changes: 5 additions & 1 deletion include/kyosu/functions/erf.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -62,8 +62,12 @@ namespace kyosu
//!
//! * The value of the error function is returned.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wolfram MathWorld: Erf](https://mathworld.wolfram.com/Erf.html)
//! * [DLMF: Error Functions](https://dlmf.nist.gov/7.2#i)
//! * [Wikipedia: Error Function](https://en.wikipedia.org/wiki/Error_function)
//!
//! @groupheader{Example}
//! @godbolt{doc/erf.cpp}
//======================================================================================================================
inline constexpr auto erf = eve::functor<erf_t>;
Expand Down
4 changes: 3 additions & 1 deletion include/kyosu/functions/erfcx.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -74,8 +74,10 @@ namespace kyosu
//!
//! 2. The value of the normalized complementary error function is returned.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wikipedia: Error function](https://en.wikipedia.org/wiki/Error_function)
//!
//! @groupheader{Example}
//! @godbolt{doc/erfcx.cpp}
//======================================================================================================================
inline constexpr auto erfcx = eve::functor<erfcx_t>;
Expand Down
6 changes: 5 additions & 1 deletion include/kyosu/functions/erfi.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -77,8 +77,12 @@ namespace kyosu
//!
//! Returns the imaginary error function \f$ \displaystyle \mathrm{erfi}(z) = -i\mathrm{erf}(iz)\f$
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wolfram MathWorld: Erfi](https://mathworld.wolfram.com/Erfi.html)
//! * [DLMF](https://dlmf.nist.gov/7.1)
//! * [Wikipedia: Error Function](https://en.wikipedia.org/wiki/Error_function)
//!
//! @groupheader{Example}
//! @godbolt{doc/erfi.cpp}
//======================================================================================================================
inline constexpr auto erfi = eve::functor<erfi_t>;
Expand Down
5 changes: 4 additions & 1 deletion include/kyosu/functions/faddeeva.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -56,8 +56,11 @@ namespace kyosu
//!
//! Returns \f$e^{-z^2}\mathrm{erfc}(-iz)\f$ the scaled complex complementary error function
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [DLMF: Error Functions](https://dlmf.nist.gov/7.21)
//! * [Wikipedia: Faddeeva function](https://en.wikipedia.org/wiki/Faddeeva_function)
//!
//! @groupheader{Example}
//! @godbolt{doc/faddeeva.cpp}
//======================================================================================================================
inline constexpr auto faddeeva = eve::functor<faddeeva_t>;
Expand Down
3 changes: 2 additions & 1 deletion include/kyosu/functions/horner.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -109,9 +109,10 @@ namespace kyosu
//! * If x is scalar, the polynomials are all computed at the same point
//! * If x is simd, the nth polynomial is computed on the nth value of x
//!
//! @groupheader{External references}
//! * [Wikipedia: Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method)
//!
//! @groupheader{Example}
//!
//! @godbolt{doc/horner.cpp}
//======================================================================================================================
inline constexpr auto horner = eve::functor<horner_t>;
Expand Down
5 changes: 4 additions & 1 deletion include/kyosu/functions/lambda.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -74,8 +74,11 @@ namespace kyosu
//!
//! Returns the Dirichlet sum \f$ \displaystyle \sum_0^\infty \frac{1}{(2n+1)^z}\f$
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wolfram MathWorld: Dirichlet lambda](https://mathworld.wolfram.com/DirichletLambdaFunction.html)
//! * [Wikipedia: Dirichlet series](https://en.wikipedia.org/wiki/Dirichlet_series)
//!
//! @groupheader{Example}
//! @godbolt{doc/lambda.cpp}
//======================================================================================================================
inline constexpr auto lambda = eve::functor<lambda_t>;
Expand Down
4 changes: 3 additions & 1 deletion include/kyosu/functions/lbeta.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -57,8 +57,10 @@ namespace kyosu
//!
//! `log(beta(x, y))`.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wolfram MathWorld: Beta Function](https://mathworld.wolfram.com/BetaFunction.html)
//!
//! @groupheader{Example}
//! @godbolt{doc/lbeta.cpp}
//======================================================================================================================
inline constexpr auto lbeta = eve::functor<lbeta_t>;
Expand Down
3 changes: 3 additions & 0 deletions include/kyosu/functions/lerp.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,9 @@ namespace kyosu
//!
//! @see slerp for better unitary quaternion (spheroidal) interpolation.
//!
//! @groupheader{External references}
//! * [Wikipedia: Linear interpolation](https://en.wikipedia.org/wiki/Linear_interpolation)
//!
//! @groupheader{Example}
//!
//! @godbolt{doc/lerp.cpp}
Expand Down
6 changes: 5 additions & 1 deletion include/kyosu/functions/log.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -98,8 +98,12 @@ namespace kyosu
//!
//! 3. `log(z)` is semantically equivalent to `log(abs(z)) + sign(pure(z)) * arg(z)`
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wolfram MathWorld: Logarithm](https://mathworld.wolfram.com/Logarithm.html)
//! * [DLMF: Logarithm](https://dlmf.nist.gov/4.2)
//! * [Wikipedia: Logarithm](https://en.wikipedia.org/wiki/Logarithm)
//!
//! @groupheader{Example}
//! @godbolt{doc/log.cpp}
//======================================================================================================================
inline constexpr auto log = eve::functor<log_t>;
Expand Down
4 changes: 3 additions & 1 deletion include/kyosu/functions/log10.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -75,9 +75,11 @@ namespace kyosu
//! 1. a real typed input z is treated as if `complex(z)` was entered.
//! 2. returns [log](@ref kyosu::log)(z)/log_10(as(z)).
//!
//! @groupheader{External references}
//! * [Wolfram MathWorld: Common Logarithm](https://mathworld.wolfram.com/CommonLogarithm.html)
//! * [Wikipedia: Logarithm](https://en.wikipedia.org/wiki/Logarithm)
//!
//! @groupheader{Example}
//!
//! @godbolt{doc/log10.cpp}
//======================================================================================================================
inline constexpr auto log10 = eve::functor<log10_t>;
Expand Down
4 changes: 3 additions & 1 deletion include/kyosu/functions/log2.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -78,8 +78,10 @@ namespace kyosu
//! 1. a real typed input z is treated as if `complex(z)` was entered.
//! 2. returns [log](@ref kyosu::log)(z)/log_2(as(z)).
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wikipedia: Binary Logarithm](https://en.wikipedia.org/wiki/Binary_logarithm)
//!
//! @groupheader{Example}
//! @godbolt{doc/log2.cpp}
//======================================================================================================================
inline constexpr auto log2 = eve::functor<log2_t>;
Expand Down
4 changes: 3 additions & 1 deletion include/kyosu/functions/lpnorm.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -60,8 +60,10 @@ namespace kyosu
//!
//! Returns \f$ \left(\sum_{i = 0}^n |x_i|^p\right)^{\frac1p} \f$.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wikipedia: Error Function](https://en.wikipedia.org/wiki/Lp_space)
//!
//! @groupheader{Example}
//! @godbolt{doc/lpnorm.cpp}
//======================================================================================================================
inline constexpr auto lpnorm = eve::functor<lpnorm_t>;
Expand Down
5 changes: 4 additions & 1 deletion include/kyosu/functions/lrising_factorial.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -57,8 +57,11 @@ namespace kyosu
//! \f$\displaystyle \log\left(\frac{\Gamma(a+x)}{\Gamma(a)}\right)\f$ is returned.
//! If all iputs are real typed they are reated as complex ones.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wolfram MathWorld: Rising Factorial](https://mathworld.wolfram.com/RisingFactorial.html)
//! * [Wikipedia: Error Function](https://en.wikipedia.org/wiki/Falling_and_rising_factorials)
//!
//! @groupheader{Example}
//! @godbolt{doc/lrising_factorial.cpp}
//======================================================================================================================
inline constexpr auto lrising_factorial = eve::functor<lrising_factorial_t>;
Expand Down
4 changes: 3 additions & 1 deletion include/kyosu/functions/manhattan.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -63,8 +63,10 @@ namespace kyosu
//!
//! @note This is NOT `lpnorm(1, x0, xs...)` which is the \f$l_1\f$ norm of \f$l_2\f$ norm of its arguments.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wolfram MathWorld: L1 norm](https://mathworld.wolfram.com/L1-Norm.html)
//!
//! @groupheader{Example}
//! @godbolt{doc/manhattan.cpp}
//======================================================================================================================
inline constexpr auto manhattan = eve::functor<manhattan_t>;
Expand Down
4 changes: 4 additions & 0 deletions include/kyosu/functions/pow.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,10 @@ namespace kyosu
//! 4. pow can accept an integral typed second parameter, in this case it is the russian peasant algorithm
//! that is used (feasible as every monogen ideals are commutative).
//!
//! @groupheader{External references}
//! * [C++ standard reference: complex pow](https://en.cppreference.com/w/cpp/numeric/complex/pow)
//! * [Wolfram MathWorld: Power](https://mathworld.wolfram.com/Power.html)
//!
//! @groupheader{Example}
//!
//! @godbolt{doc/pow.cpp}
Expand Down
3 changes: 2 additions & 1 deletion include/kyosu/functions/reverse_horner.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -113,9 +113,10 @@ namespace kyosu
//! * If x is scalar, the polynomials are all computed at the same point
//! * If x is simd, the nth polynomial is computed on the nth value of x
//!
//! @groupheader{External references}
//! * [Wikipedia: Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method)
//!
//! @groupheader{Example}
//!
//! @godbolt{doc/reverse_horner.cpp}
//======================================================================================================================
inline constexpr auto reverse_horner = eve::functor<reverse_horner_t>;
Expand Down
5 changes: 4 additions & 1 deletion include/kyosu/functions/rising_factorial.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -56,8 +56,11 @@ namespace kyosu
//!
//! \f$\displaystyle \frac{\Gamma(a+x)}{\Gamma(a)}\f$ is returned.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wolfram MathWorld: Rising Factorial](https://mathworld.wolfram.com/RisingFactorial.html)
//! * [Wikipedia: Error Function](https://en.wikipedia.org/wiki/Falling_and_rising_factorials)
//!
//! @groupheader{Example}
//! @godbolt{doc/rising_factorial.cpp}
//======================================================================================================================
inline constexpr auto rising_factorial = eve::functor<rising_factorial_t>;
Expand Down
4 changes: 3 additions & 1 deletion include/kyosu/functions/sec.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -56,8 +56,10 @@ namespace kyosu
//!
//! Returns the secant of the argument.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wolfram MathWorld](https://mathworld.wolfram.com/Secant.html)
//!
//! @groupheader{Example}
//! @godbolt{doc/sec.cpp}
//======================================================================================================================
inline constexpr auto sec = eve::functor<sec_t>;
Expand Down
6 changes: 5 additions & 1 deletion include/kyosu/functions/sin.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -70,8 +70,12 @@ namespace kyosu
//! where \f$I_z = \frac{\underline{z}}{|\underline{z}|}\f$ and
//! \f$\underline{z}\f$ is the [pure](@ref kyosu::imag ) part of \f$z\f$.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [C++ standard reference: complex sin](https://en.cppreference.com/w/cpp/numeric/complex/sin)
//! * [Wolfram MathWorld: Sinine](https://mathworld.wolfram.com/Sine.html)
//! * [Wikipedia: sinus](https://fr.wikipedia.org/wiki/sinus)
//!
//! @groupheader{Example}
//! @godbolt{doc/sin.cpp}
//======================================================================================================================
inline constexpr auto sin = eve::functor<sin_t>;
Expand Down
5 changes: 4 additions & 1 deletion include/kyosu/functions/sinc.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -66,8 +66,11 @@ namespace kyosu
//!
//! Returns the sine cardinal of the argument.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wikipedia](https://fr.wikipedia.org/wiki/Sinus_cardinal)
//! * [Wolfram MathWorld](https://mathworld.wolfram.com/SineCardinalFunction.html)
//!
//! @groupheader{Example}
//! @godbolt{doc/sinc.cpp}
//======================================================================================================================
inline constexpr auto sinc = eve::functor<sinc_t>;
Expand Down
5 changes: 5 additions & 0 deletions include/kyosu/functions/sinh.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -103,6 +103,11 @@ namespace kyosu
//!
//! 3. Is semantically equivalent to (exp(z)-exp(-z))/2.
//!
//! @groupheader{External references}
//! * [C++ standard reference: complex sinh](https://en.cppreference.com/w/cpp/numeric/complex/sinh)
//! * [Wolfram MathWorld: Hyperbolic Sine](https://mathworld.wolfram.com/HyperbolicSine.html)
//! * [Wikipedia: hyperbolic functions](https://en.wikipedia.org/wiki/Hyperbolic_functions)
//!
//! @groupheader{Example}
//!
//! @godbolt{doc/sinh.cpp}
Expand Down
5 changes: 5 additions & 0 deletions include/kyosu/functions/sqrt.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,11 @@ namespace kyosu
//!
//! 2. Returns a square root of z.
//!
//! @groupheader{External references}
//! * [C++ standard reference: complex cosh](https://en.cppreference.com/w/cpp/numeric/complex/sqrt)
//! * [Wolfram MathWorld: Square Root](https://mathworld.wolfram.com/SquareRoot.html)
//! * [Wikipedia: Square root](https://en.wikipedia.org/wiki/Square_root)
//!
//! @groupheader{Example}
//!
//! @godbolt{doc/sqrt.cpp}
Expand Down
6 changes: 5 additions & 1 deletion include/kyosu/functions/tan.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -68,8 +68,12 @@ namespace kyosu
//! 3. Returns \f$-I_z\, \tanh(I_z\; z)\f$ if \f$z\f$ is not zero else \f$\tan(z_0)\f$, where \f$I_z = \frac{\underline{z}}{|\underline{z}|}\f$ and
//! \f$\underline{z}\f$ is the [pure](@ref kyosu::imag ) part of \f$z\f$.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [C++ standard reference: complex tan](https://en.cppreference.com/w/cpp/numeric/complex/tan)
//! * [Wolfram MathWorld: Tangent](https://mathworld.wolfram.com/Tangent.html)
//! * [Wikipedia: tangent](https://fr.wikipedia.org/wiki/tangent)
//!
//! @groupheader{Example}
//! @godbolt{doc/tan.cpp}
//======================================================================================================================
inline constexpr auto tan = eve::functor<tan_t>;
Expand Down
5 changes: 4 additions & 1 deletion include/kyosu/functions/tgamma.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -57,8 +57,11 @@ namespace kyosu
//!
//! Returns \f$\Gamma(z)\f$.
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wolfram MathWorld: Gamma Function](https://mathworld.wolfram.com/GammaFunction.html)
//! * [Wikipedia: Gamma function](https://en.wikipedia.org/wiki/Gamma_function)
//!
//! @groupheader{Example}
//! @godbolt{doc/tgamma.cpp}
//======================================================================================================================
inline constexpr auto tgamma = eve::functor<tgamma_t>;
Expand Down
4 changes: 3 additions & 1 deletion include/kyosu/functions/zeta.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -69,8 +69,10 @@ namespace kyosu
//!
//! Returns the Dirichlet zeta sum: \f$ \displaystyle \sum_0^\infty \frac{1}{(n+1)^z}\f$
//!
//! @groupheader{Example}
//! @groupheader{External references}
//! * [Wikipedia: Dirichlet series](https://en.wikipedia.org/wiki/Dirichlet_series)
//!
//! @groupheader{Example}
//! @godbolt{doc/zeta.cpp}
//======================================================================================================================
inline constexpr auto zeta = eve::functor<zeta_t>;
Expand Down