-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrecon.py
233 lines (185 loc) · 7.17 KB
/
recon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
__author__ = 'SherlockLiao'
import torch
import torchvision
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import save_image
from torchvision.datasets import MNIST
import torch.nn.functional as F
import os
import matplotlib.pyplot as plt
from scipy.io import loadmat
import torch.utils.data as data_utils
import numpy as np
# x = loadmat("./Data/COIL20.mat")
# # print(x)
# feat = torch.from_numpy(x['fea'])
# gt = torch.from_numpy(x['gnd'])
# feat = np.reshape(feat,(1440,32,32,1))
# feat = feat.permute(0,3,2,1)
# print(feat.shape)
# train = data_utils.TensorDataset(feat, gt)
# dataloader = data_utils.DataLoader(train, batch_size=50, shuffle=False)
print("Begin")
direc = './results'
if not os.path.exists(direc):
os.mkdir(direc)
print("Folder Created")
def to_img(x):
# x = 0.5 * (x + 1)
# x = x.clamp(0, 1)
x = x.view(x.size(0), 1, 32, 32)
return x
num_epochs = 100
batch_size = 64
learning_rate = 1e-3
def add_noise(img):
noise = torch.randn(img.size()) * 0.01
noisy_img = img + noise
return noisy_img
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
dataset = MNIST('./data', transform=img_transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False)
print("data loaded")
def custom_viz(kernels, path=None, cols=None):
def set_size(w,h, ax=None):
if not ax:
ax=plt.gca()
l = ax.figure.subplotpars.left
r = ax.figure.subplotpars.right
t = ax.figure.subplotpars.top
b = ax.figure.subplotpars.bottom
figw = float(w)/(r-l)
figh = float(h)/(t-b)
ax.figure.set_size_inches(figw, figh)
N = kernels.shape[0]
C = kernels.shape[1]
Tot = N*C
# If single channel kernel with HxW size,# plot them in a row.# Else, plot image with C number of columns.
if C>1:
columns = C
elif cols==None:
columns = N
elif cols:
columns = cols
rows = Tot // columns
rows += Tot % columns
pos = range(1,Tot + 1)
fig = plt.figure(1)
fig.tight_layout()
k=0
for i in range(kernels.shape[0]):
for j in range(kernels.shape[1]):
img = kernels[i][j]
ax = fig.add_subplot(rows,columns,pos[k])
ax.imshow(img, cmap='gray')
plt.axis('off')
k = k+1
set_size(30,30,ax)
if path:
plt.savefig(path, dpi=100)
# plt.show()
class autoencoder(nn.Module):
def __init__(self):
super(autoencoder, self).__init__()
self.encoder1 = nn.Conv2d(1, 8, 3, stride=1, padding=1) # b, 16, 10, 10
self.encoder2= nn.Conv2d(8, 16, 3, stride=1, padding=1) # b, 8, 3, 3
self.encoder3= nn.Conv2d(16, 32, 3, stride=1, padding=1)
self.decoder1 = nn.ConvTranspose2d(32, 16, 3, stride=2,padding=0) # b, 16, 5, 5
self.decoder2 = nn.ConvTranspose2d(16, 8, 3, stride=2, padding=1) # b, 8, 15, 1
self.decoder3 = nn.ConvTranspose2d(8, 1, 4, stride=2, padding=0) # b, 1, 28, 28
def forward(self, x):
out = F.relu(F.max_pool2d(self.encoder1(x),2,2))
out = F.relu(F.max_pool2d(self.encoder2(out),2,2))
out = F.relu(F.max_pool2d(self.encoder3(out),2,2))
out = F.relu(self.decoder1(out))
out = F.relu(self.decoder2(out))
out = F.tanh(self.decoder3(out))
return out
class rautoencoder(nn.Module):
def __init__(self):
super(rautoencoder, self).__init__()
self.encoder1 = nn.Conv2d(64, 32, 3, stride=2, padding=1) # b, 16, 10, 10
self.encoder2 = nn.Conv2d(32, 16, 3, stride=2, padding=1) # b, 8, 3, 3
self.encoder3 = nn.Conv2d(16, 1, 3, stride=2) # b, 8, 3, 3
self.decoder1 = nn.ConvTranspose2d(1, 16, 3, stride=2) # b, 16, 5, 5
self.decoder2 = nn.ConvTranspose2d(16, 32, 5, stride=2, padding=1)
self.decoder3 = nn.ConvTranspose2d(32, 64, 2, stride=2, padding=1) # b, 1, 28, 28
def forward(self, x):
# print(x.shape)
out = F.relu(self.decoder1(x))
# print(out.shape)
out = F.relu(self.decoder2(out))
# print(out.shape)
out = F.relu(self.decoder3(out))
# print(out.shape)
out = F.relu(F.max_pool2d(self.encoder1(out),1))
# print(out.shape)
out = F.relu(F.max_pool2d(self.encoder2(out),1,1))
# print(out.shape)
out = F.tanh(self.encoder3(out))
# print(out.shape)
return out
model = autoencoder().cuda().float()
criterion = nn.MSELoss()
# print(model.parameters())
optimizer = torch.optim.Adam(list(model.parameters()), lr=learning_rate,
weight_decay=1e-5)
tm =0
# print(model.layers[0])
for epoch in range(100):
# break
for data in dataloader:
img, _ = data
# img = img.view(img.size(0), -1)
noisy_img = add_noise(img)
noisy_img = Variable(noisy_img).cuda().float()
img = Variable(img).cuda()
# ===================forward=====================
output = model(img).float()
# print(noisy_img.type,img.type,output.type)
loss = criterion(output, img)
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch == 90:
tm = tm +1
if tm==20:
imgg = img
outputg = output
# ===================log========================
print('epoch [{}/{}], loss:{:.4f}'
.format(epoch+1, num_epochs, loss.data))
if epoch == 90 :
tm = 0
pic = to_img(outputg.cpu().data)
save_image(pic, direc+'/outputa{}.png'.format(epoch))
save_image(imgg, direc+'/input{}.png'.format(epoch))
print("Image Saving")
# kernels = model.encoder1.weight.cpu().detach().clone()
# kernels = kernels - kernels.min()
# kernels = kernels / kernels.max()
# custom_viz(kernels, direc+'/en1_weights_{}.png'.format(epoch), 4)
# kernels1 = model.encoder2.weight.cpu().detach().clone()
# kernels1 = kernels1 - kernels1.min()
# kernels1 = kernels1 / kernels1.max()
# custom_viz(kernels1, direc+'/en2_weights_{}.png'.format(epoch), 4)
# kernels2 = model.decoder2.weight.cpu().detach().clone()
# kernels2 = kernels2- kernels2.min()
# kernels2 = kernels2 / kernels2.max()
# custom_viz(kernels2, direc+'/de1_weights_{}.png'.format(epoch), 4)
# kernels3 = model.decoder2.weight.cpu().detach().clone()
# kernels3 = kernels3 - kernels3.min()
# kernels3 = kernels3 / kernels3.max()
# custom_viz(kernels3, direc+'/de2_weights_{}.png'.format(epoch), 4)
# kernels4 = model.decoder3.weight.cpu().detach().clone()
# kernels4 = kernels4 - kernels4.min()
# kernels4 = kernels4 / kernels4.max()
# custom_viz(kernels4, direc+'/de3_weights_{}.png'.format(epoch), 4)
torch.save(model.state_dict(), './autoencoder.pth')