-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluation_and_predictions_clouds.py
84 lines (66 loc) · 2.75 KB
/
evaluation_and_predictions_clouds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.callbacks import ModelCheckpoint
from utils import *
from models import *
from generators import DataGeneratorCloudsData as DataGenerator
##---- Evaluating model saved in "saved_models_precipitation/best_model.hdf5" ----##
# Parameters
ts_ahead = 1
loss = 'binary_crossentropy'
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
lags = 4
batch_size = 8
shuffle_samples = True
dim_model = '3d'
# Metrics
binarized_metrics = thresholded_mask_metrics(threshold=0.5)
metrics =['mse', binarized_metrics.binarized_mse, binarized_metrics.acc, binarized_metrics.precision, binarized_metrics.recall]
# Load model
filepath="saved_models_clouds/best_model.hdf5"
try:
model = load_model(filepath, compile=False)
except:
raise Exception('\n\nNo trained model was found! Run first the trainig script or request pretrained model.')
model.compile(loss=loss, optimizer=optimizer, metrics=metrics)
# Evaluate
try:
test_generator = DataGenerator(dir_data='dataset_clouds/test', ts_lags=lags, ts_ahead=ts_ahead, batch_size=batch_size, shuffle=shuffle_samples, dim_model = dim_model)
except:
raise Exception('\n\nNo data was found! Get and decompress the data as indicated first.')
result = model.evaluate(test_generator)
print("\n>>> Results evaluation for",ts_ahead, "ts ahead:")
print(" - MSE:", result[1])
print(" - Binarized MSE:", result[2])
print(" - Acc:", result[3])
print(" - Precision:", result[4])
print(" - Recall:", result[5])
##---- Visualize individual prdiction examples ----##
for i in range(0, 1):
# Predict one batch of samples
x_test, y_test = test_generator.__getitem__(i)
pred = model.predict(x_test)
# Iterate over samples
for j in range(len(x_test)):
# Binarize image
rounded_pred = pred.copy()
rounded_pred[rounded_pred>=0.5] = 1
rounded_pred[rounded_pred<0.5] = 0
# Visualize ground truth, prediction and binarized prediction
fig, ax = plt.subplots(1,3, figsize=(10,5), gridspec_kw={'width_ratios': [3, 3, 3.76]})
ax[0].set_title("Ground truth", fontsize=18)
ax[0].imshow(y_test[j,0,:,:,0])
ax[0].axis('off')
ax[1].set_title("Prediction", fontsize=20)
ax[1].imshow(pred[j,0,:,:,0])
ax[1].axis('off')
ax[2].set_title("Binarized prediction", fontsize=20)
im=ax[2].imshow(rounded_pred[j,0,:,:,0])
ax[2].axis('off')
fig.tight_layout()
cbr = fig.colorbar(im, shrink=0.62)
cbr.ax.set_ylabel('Probability cloud cover', fontsize=17)
cbr.ax.tick_params(labelsize=14)
plt.show()