-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
54 lines (42 loc) · 1.56 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
import torch
from torch.utils.data import Dataset
from pathlib import Path
from PIL import Image
import random
from torchvision.transforms import transforms, functional
class ImageFolderVimeo(Dataset):
def __init__(self, root, transform=None, split="train"):
from tqdm import tqdm
self.mode = split
self.transform = transform
self.samples = []
split_dir = Path(root) / Path('vimeo_septuplet/sequences')
for sub_f in tqdm(split_dir.iterdir()):
if sub_f.is_dir():
for sub_sub_f in Path(sub_f).iterdir():
self.samples += list(sub_sub_f.iterdir())
if not split_dir.is_dir():
raise RuntimeError(f'Invalid directory "{root}"')
def __getitem__(self, index):
img = Image.open(self.samples[index]).convert("RGB")
if self.transform:
return self.transform(img)
return img
def __len__(self):
return len(self.samples)
class Kodak24Dataset(Dataset):
def __init__(self, root, transform=None, split="kodak24"):
splitdir = Path(root) / split
if not splitdir.is_dir():
raise RuntimeError(f'Invalid directory "{root}"')
self.samples = [f for f in splitdir.iterdir() if f.is_file()]
self.transform = transform
self.mode = split
def __getitem__(self, index):
img = Image.open(self.samples[index]).convert("RGB")
if self.transform:
return self.transform(img)
return img
def __len__(self):
return len(self.samples)