-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.c
359 lines (298 loc) · 10.3 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#include <string.h>
#include "board.h"
#include "FreeRTOS.h"
#include "task.h"
#include "globals.h"
//
//------------------------------------------------------------------------------
//
#define MAX_SPI_DESCRIPTORS (8)
//
// SPI clock divider. Actual frequency is SystemCoreClock (72MHz) / divider.
// A divider of 8 gives a frequency of 9MHz. A divisor of 669 (107623Hz)
// seems to be the lowest the RA8876 will work at. 670 (107462Hz) fails.
//
// /8 -- 9.00 MHz
// /7 -- 10.28 MHz
// /6 -- 12.00 MHz
// /5 -- 14.40 MHz
// /4 -- 18.00 MHz
// /3 -- 24.00 MHz
// /2 -- 36.00 MHz
// /1 -- 72.00 MHz (does not work)
//
//
#define SPI0_CLOCK_DIVIDER (2)
//
//------------------------------------------------------------------------------
//
typedef struct dmaQueue_s
{
volatile size_t count;
volatile size_t head;
volatile size_t tail;
volatile size_t error;
volatile size_t xfers;
DMA_CHDESC_T dmaDesc [MAX_SPI_DESCRIPTORS] __attribute__ ((aligned (16)));
}
dmaQueue_t;
//
//------------------------------------------------------------------------------
//
static dmaQueue_t dmaQueue;
//
//------------------------------------------------------------------------------
//
// Sets up system hardware
//
static void prvSetupHardware(void)
{
SystemCoreClockUpdate ();
Board_Init ();
Board_LED_Set (0, false);
}
//
//------------------------------------------------------------------------------
//
// Tasks to toggle LED at 4Hz, 8Hz, and UART task
//
static void vLEDTask1 (void *pvParameters __attribute__ ((unused)))
{
bool LedState = false;
while (1)
{
Board_LED_Set (0, LedState);
LedState = (bool) !LedState;
vTaskDelay (pdMS_TO_TICKS (250));
}
}
static void vLEDTask2 (void *pvParameters __attribute__ ((unused)))
{
bool LedState = false;
while (1)
{
Board_LED_Set (1, LedState);
LedState = (bool) !LedState;
vTaskDelay (pdMS_TO_TICKS (125));
}
}
//
//------------------------------------------------------------------------------
//
static void dmaTXSetup (void)
{
Chip_DMA_EnableChannel (LPC_DMA, DMAREQ_SPI0_TX);
Chip_DMA_EnableIntChannel (LPC_DMA, DMAREQ_SPI0_TX);
Chip_DMA_SetupChannelConfig (LPC_DMA, DMAREQ_SPI0_TX, (DMA_CFG_PERIPHREQEN | DMA_CFG_TRIGBURST_SNGL | DMA_CFG_CHPRIORITY (1)));
memset (&dmaQueue, 0, sizeof (dmaQueue));
}
static void dmaClearChannel (DMA_CHID_T ch)
{
Chip_DMA_DisableChannel (LPC_DMA, ch);
while ((Chip_DMA_GetBusyChannels (LPC_DMA) & (1 << ch)) != 0)
;
Chip_DMA_AbortChannel (LPC_DMA, ch);
Chip_DMA_ClearErrorIntChannel (LPC_DMA, ch);
}
static void initDMA (void)
{
Chip_DMA_Init (LPC_DMA);
Chip_DMA_Enable (LPC_DMA);
Chip_DMA_SetSRAMBase (LPC_DMA, DMA_ADDR (Chip_DMA_Table));
dmaTXSetup ();
NVIC_EnableIRQ (DMA_IRQn);
}
static void initSPI0 (void)
{
SPI_CFG_T spiCfg = {0};
spiCfg.Mode = SPI_MODE_MASTER;
spiCfg.ClkDiv = SPI0_CLOCK_DIVIDER;
spiCfg.ClockMode = SPI_CLOCK_MODE3;
spiCfg.DataOrder = SPI_DATA_MSB_FIRST;
spiCfg.SSELPol = SPI_CFG_SPOL0_LO | SPI_CFG_SPOL1_LO | SPI_CFG_SPOL2_LO | SPI_CFG_SPOL3_LO;
Chip_SPI_Init (LPC_SPI0);
Chip_SPI_SetConfig (LPC_SPI0, &spiCfg);
Chip_SPI_SetControlInfo (LPC_SPI0, 8, SPI_TXCTL_RXIGNORE | SPI_TXDATCTL_EOT);
Chip_SPI_Enable (LPC_SPI0);
Chip_Clock_EnablePeriphClock (SYSCTL_CLOCK_SWM);
Chip_IOCON_PinMuxSet (LPC_IOCON, GPIO_SPI0_SCK_PORT, GPIO_SPI0_SCK_PIN, (IOCON_MODE_INACT | IOCON_DIGMODE_EN));
Chip_IOCON_PinMuxSet (LPC_IOCON, GPIO_SPI0_MISO_PORT, GPIO_SPI0_MISO_PIN, (IOCON_MODE_INACT | IOCON_DIGMODE_EN));
Chip_IOCON_PinMuxSet (LPC_IOCON, GPIO_SPI0_MOSI_PORT, GPIO_SPI0_MOSI_PIN, (IOCON_MODE_INACT | IOCON_DIGMODE_EN));
Chip_IOCON_PinMuxSet (LPC_IOCON, GPIO_SPI0_SSEL_PORT, GPIO_SPI0_SSEL_PIN, (IOCON_MODE_INACT | IOCON_DIGMODE_EN));
Chip_SWM_MovablePortPinAssign (SWM_SPI0_SCK_IO, GPIO_SPI0_SCK_PORT, GPIO_SPI0_SCK_PIN);
Chip_SWM_MovablePortPinAssign (SWM_SPI0_MISO_IO, GPIO_SPI0_MISO_PORT, GPIO_SPI0_MISO_PIN);
Chip_SWM_MovablePortPinAssign (SWM_SPI0_MOSI_IO, GPIO_SPI0_MOSI_PORT, GPIO_SPI0_MOSI_PIN);
Chip_SWM_MovablePortPinAssign (SWM_SPI0_SSELSN_0_IO, GPIO_SPI0_SSEL_PORT, GPIO_SPI0_SSEL_PIN);
Chip_Clock_DisablePeriphClock (SYSCTL_CLOCK_SWM);
}
//
// Only handles SPI0 TX conditions.
//
void DMA_IRQHandler (void);
void DMA_IRQHandler (void)
{
uint32_t errors = Chip_DMA_GetErrorIntChannels (LPC_DMA);
uint32_t pending = Chip_DMA_GetActiveIntAChannels (LPC_DMA);
if ((errors | pending) & (1 << DMAREQ_SPI0_TX))
{
Chip_DMA_ClearActiveIntAChannel (LPC_DMA, DMAREQ_SPI0_TX);
if (errors & (1 << DMAREQ_SPI0_TX))
{
dmaClearChannel (DMAREQ_SPI0_TX);
dmaTXSetup ();
dmaQueue.error++;
}
else
{
if (--dmaQueue.count)
{
Chip_DMA_SetupTranChannel (LPC_DMA, DMAREQ_SPI0_TX, &dmaQueue.dmaDesc [dmaQueue.tail]);
Chip_DMA_SetupChannelTransfer (LPC_DMA, DMAREQ_SPI0_TX, dmaQueue.dmaDesc [dmaQueue.tail].xfercfg);
Chip_DMA_SetValidChannel (LPC_DMA, DMAREQ_SPI0_TX);
dmaQueue.tail = (dmaQueue.tail + 1) % MAX_SPI_DESCRIPTORS;
}
}
}
}
//
// 1 -- dmaQueue is full, please call back later
// 0 -- Success
// -1 -- Argument error
//
static int dmaSPI (const void *pvData, size_t dataLen, size_t wordSize)
{
uint32_t width;
if (dataLen > 1024)
return -1;
if (dmaQueue.count >= MAX_SPI_DESCRIPTORS)
return 1;
switch (wordSize)
{
case sizeof (uint8_t) : width = DMA_XFERCFG_WIDTH_8; break;
case sizeof (uint16_t) : width = DMA_XFERCFG_WIDTH_16; break;
case sizeof (uint32_t) : width = DMA_XFERCFG_WIDTH_32; break;
default : return -1;
}
NVIC_DisableIRQ (DMA_IRQn);
{
dmaQueue.dmaDesc [dmaQueue.head].source = DMA_ADDR ((uint8_t *) pvData + (dataLen * wordSize) - 1);
dmaQueue.dmaDesc [dmaQueue.head].dest = DMA_ADDR (&LPC_SPI0->TXDAT);
dmaQueue.dmaDesc [dmaQueue.head].next = DMA_ADDR (0);
dmaQueue.dmaDesc [dmaQueue.head].xfercfg = DMA_XFERCFG_CFGVALID | DMA_XFERCFG_SETINTA | DMA_XFERCFG_SWTRIG | DMA_XFERCFG_SRCINC_1 | DMA_XFERCFG_DSTINC_0 | DMA_XFERCFG_XFERCOUNT (dataLen) | width;
if (dmaQueue.count == 0)
{
Chip_DMA_SetupTranChannel (LPC_DMA, DMAREQ_SPI0_TX, &dmaQueue.dmaDesc [dmaQueue.head]);
Chip_DMA_SetupChannelTransfer (LPC_DMA, DMAREQ_SPI0_TX, dmaQueue.dmaDesc [dmaQueue.head].xfercfg);
Chip_DMA_SetValidChannel (LPC_DMA, DMAREQ_SPI0_TX);
dmaQueue.tail = (dmaQueue.tail + 1) % MAX_SPI_DESCRIPTORS;
}
dmaQueue.count++;
dmaQueue.head = (dmaQueue.head + 1) % MAX_SPI_DESCRIPTORS;
dmaQueue.xfers++;
}
NVIC_EnableIRQ (DMA_IRQn);
return 0;
}
//
// dataLen is the number of entries in dataPtr, e.g. if dataPtr is an array of
// uint16_t [256], it would be 256, and wordSize would be sizeof (uint16_t).
static int dmaSPIEx (const void *dataPtr, size_t dataLen, size_t wordSize)
{
if (dataLen <= 1024)
return dmaSPI (dataPtr, dataLen, wordSize);
else
{
int r;
size_t blocks = dataLen / 1024;
size_t remainder = dataLen % 1024;
for (size_t block = 0; block < blocks; block++)
{
while ((r = dmaSPI (dataPtr, 1024, wordSize) > 0) && !dmaQueue.error)
vTaskDelay (pdMS_TO_TICKS (1));
if (r < 0)
return r;
if (dmaQueue.error)
return -1;
dataPtr = (uint8_t *) dataPtr + (1024 * wordSize);
}
while ((r = dmaSPI (dataPtr, remainder, wordSize) > 0) && !dmaQueue.error)
vTaskDelay (pdMS_TO_TICKS (1));
if (dmaQueue.error)
return -1;
return r;
}
}
typedef struct data_s
{
const char *str;
const size_t len;
}
data_t;
static void vDMATask (void *pvParameters __attribute__ ((unused)))
{
static int err;
static const data_t data [] = {
{ .len = 32, .str = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", }, // 1
{ .len = 32, .str = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb", }, // 2
{ .len = 32, .str = "cccccccccccccccccccccccccccccccc", }, // 3
{ .len = 32, .str = "dddddddddddddddddddddddddddddddd", }, // 4
{ .len = 32, .str = "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee", }, // 5
{ .len = 32, .str = "ffffffffffffffffffffffffffffffff", }, // 6
{ .len = 32, .str = "gggggggggggggggggggggggggggggggg", }, // 7
{ .len = 32, .str = "hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh", }, // 8
{ .len = 32, .str = "iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii", }, // 9
{ .len = 32, .str = "jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj", }, // 10
{ .len = 32, .str = "kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk", }, // 11
{ .len = 32, .str = "llllllllllllllllllllllllllllllll", }, // 12
{ .len = 32, .str = "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm", }, // 13
{ .len = 32, .str = "nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn", }, // 14
{ .len = 32, .str = "oooooooooooooooooooooooooooooooo", }, // 15
{ .len = 32, .str = "pppppppppppppppppppppppppppppppp", }, // 16
{ .len = 32, .str = "qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq", }, // 17
{ .len = 32, .str = "rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr", }, // 18
{ .len = 32, .str = "ssssssssssssssssssssssssssssssss", }, // 19
{ .len = 32, .str = "tttttttttttttttttttttttttttttttt", }, // 20
{ .len = 32, .str = "uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu", }, // 21
{ .len = 32, .str = "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv", }, // 22
{ .len = 32, .str = "wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww", }, // 23
{ .len = 32, .str = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", }, // 24
{ .len = 32, .str = "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy", }, // 25
{ .len = 32, .str = "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", }, // 26
};
while (1)
{
for (size_t i = 0; i < arrsizeof (data); i++)
{
while (dmaSPIEx (data [i].str, data [i].len, sizeof (char)) && !dmaQueue.error)
vTaskDelay (pdMS_TO_TICKS (1));
if (dmaQueue.error)
{
err = 2;
goto stopit;
}
}
vTaskDelay (pdSEC_TO_TICKS (1));
if (dmaQueue.count)
{
err = 3;
goto stopit;
}
}
stopit:
while (err)
vTaskDelay (pdSEC_TO_TICKS (1));
}
//
//------------------------------------------------------------------------------
//
int main (void)
{
prvSetupHardware ();
initDMA ();
initSPI0 ();
xTaskCreate (vLEDTask1, "vTaskLed1", configMINIMAL_STACK_SIZE, NULL, (tskIDLE_PRIORITY + 1UL), (TaskHandle_t *) NULL);
xTaskCreate (vLEDTask2, "vTaskLed2", configMINIMAL_STACK_SIZE, NULL, (tskIDLE_PRIORITY + 1UL), (TaskHandle_t *) NULL);
xTaskCreate (vDMATask, "vTaskDMA", configMINIMAL_STACK_SIZE, NULL, (tskIDLE_PRIORITY + 2UL), (TaskHandle_t *) NULL);
vTaskStartScheduler ();
return 1;
}