generated from UtrechtUniversity/simple-r-project
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPart_6_Statistical_Modelling_SpO2.qmd
957 lines (759 loc) · 31.5 KB
/
Part_6_Statistical_Modelling_SpO2.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
---
title: "Preoperative Atelectasis"
subtitle: "Part 6: Statistical Modelling of SpO2"
author: "Javier Mancilla Galindo"
date: "`r Sys.Date()`"
execute:
echo: false
warning: false
toc: true
toc_float: true
format:
html:
embed-resources: true
pdf:
documentclass: scrartcl
editor: visual
---
\pagebreak
# Setup
#### Packages used
```{r}
#| echo: true
if (!require("pacman", quietly = TRUE)) {
install.packages("pacman")
}
pacman::p_load(
tidyverse, # Used for basic data handling and visualization.
RColorBrewer, #Color palettes for data visualization.
table1, #Used to add lables to variables.
gridExtra, #Used to arrange multiple ggplots in a grid.
grid, #Used to arrange multiple ggplots in a grid.
CBPS, #Used to calculate non-parametric propensity scores for IPW.
WeightIt, #Used to calculate weights from propensity scores for IPW.
mgcv, #Used to model non-linear relationships with a general additive model.
gt, #Used to present a summary of the results of tables.
gratia, #Used together with gglopt2 to create smooth partial effects plot
# from gam models.
metR, # Used to plot predictions of SpO2.
report #Used to cite packages used in this session.
)
```
##### Session and package dependencies
```{r}
# Credits chunk of code: Alex Bossers, Utrecht University (a.bossers@uu.nl)
session <- sessionInfo()
# remove clutter
session$BLAS <- NULL
session$LAPACK <- NULL
session$loadedOnly <- NULL
# write log file
writeLines(
capture.output(print(session, locale = FALSE)),
paste0("sessions/",lubridate::today(), "_session_Part_6.txt")
)
session
```
```{r}
#| include: false
# Create directories for sub-folders
figfolder <- "../results/output_figures"
tabfolder <- "../results/output_tables"
psfolder <- "../data/processed"
dir.create(figfolder, showWarnings = FALSE)
dir.create(tabfolder, showWarnings = FALSE)
dir.create(psfolder, showWarnings = FALSE)
```
```{r}
#| include: false
# Load dataset
data <- read.csv("../data/processed/atelectasis_included.csv",
na.strings="NA",
row.names = NULL)
# Recode variables
source("scripts/variable_names.R")
# Recreate variables created in:
## Part 2 (altitude category) and ## Part 4 (collapsed atelectasis percent):
data <- data %>%
mutate(
altitude_cat = cut(altitude,
breaks=c(0,1000,2500),
right=FALSE,
labels=c("Low altitude","Moderate altitude")
)
)
data$atelectasis_percent_factor <- factor(
data$atelectasis_percent,
levels=c(0,2.5,5,7.5,10,12.5,15,17.5,27.5)
) %>%
fct_collapse("17.5%" = c(17.5,27.5)) %>%
factor(labels = c("0%","2.5%","5%","7.5%","10%","12.5%","15%","17.5%"))
data$atelectasis_percent[data$atelectasis_percent==27.5] <- 17.5
```
\pagebreak
# Model SpO2
The SpO2 variable does not have a normal distribution. Furthermore, the distance between 1% increases in SpO2 cannot be considered equidistant increases since values are determined from the S-shaped curve of hemoglobin saturation. This is the reason why the distribution of SpO2 is negatively skewed, with upper values reaching the saturation point of the hemoglobin curve.
Therefore, modelling SpO2 as a linear term could be potentially misleading. Nonetheless, a model assuming a gaussian distribution for SpO2 may potentially be easier to understand and communicate.
Thus, I first created model SpO2 assuming a gaussian distribution and then applied a fractional regression model which is more appropriate for the distribution of this variable. The rationale for this was that if conclusions were not different with both models, presenting a model assuming a gaussian distribution would have been easier to understand and communicate. However, since conclusions were indeed different, I will present the results for the more appropriate fractional regression model.
As a last note, I first assessed the relationships between variables without removing any outliers. Examination of residuals showed that there were some influential outliers having an impact on the models. Thus, I decided to remove a total of 7 outliers only for the SpO2 models shown here (3 for the SpO2 \~ BMI relationship and 4 for SpO2 \~ atelectasis percent). This document presents the results of analyses after removing outliers. This code can be readapted to run all analyses without the removal of outliers.
## Fractional regression model
Convert SpO2 to fractional values between 0 and 1 to model.
```{r}
#| echo: true
data <- data %>% mutate(spo2_fraction = spo2_VPO/100)
```
#### Empty model
First, I will fit an empty model
```{r}
model<-gam(spo2_fraction~1,
data=data,
family = quasibinomial(link = logit)
)
R2_empty <- summary(model)$r.sq
dev_empty <- summary(model)$dev.expl
```
#### BMI smooth term and residuals
Model with a smooth BMI term as the only explanatory variable.
Since we are now using a different family function (quasibinomial with logit link) and we are no longer assuming a Gaussian distribution (which was done in figure 1 for an initial impression of the relationship between variables), it is important to determine the k value that offers the best representation of the change in the outcome variable with this function. I checked this by varying the value of k in the following code and ***k=8***\* offered the best visual representation with the largest increase in deviance explained and optimal k-index. While varying k, it will be noted that the highest edf occurs at k=8. This can be replicated by varying the value of k in the following code:
```{r}
model_BMI <- gam(spo2_fraction~s(BMI,k=8),
data=data,
family = quasibinomial(link = logit)
)
k.check(model_BMI)
```
```{r}
summary(model_BMI)
```
```{r}
plot(model_BMI)
```
```{r}
gam.check(model_BMI)
```
There are influential residuals. Will assess which of these could be removed according to Cook's distance.
```{r}
#| echo: true
data %>%
mutate(
cooksd = cooks.distance(model_BMI),
outlier = ifelse(cooksd < 4/nrow(data), "keep","delete")
) %>%
filter(outlier=="delete") %>%
dplyr::select(ID,BMI,spo2_VPO,cooksd,outlier) %>%
arrange(desc(cooksd)) %>%
gt()
```
Now, I will examine atelectasis percentage:
#### Atelectasis percent smooth term and residuals
Using a smooth term for atelectasis percentage is comparable to having it as categorical, which can be checked by substituting the smooth term for the categorical term in the models. However, the smooth term will allow to have a visual representation of the partial effect of atelectasis percent on SpO2 and compare it to BMI, which is why I decided to keep the smooth term to model the effect of atelectasis.
I determined the optimal k value for atelectasis at k=5. A term with a lower k (i.e., k=3) lead to a decrease in explained deviance compared to the categorical term and was not a good representation of the trend in values for the variable, especially at the higher values as it curved upwards compared to the downward trend seen. Therefore, I kept k=5.
```{r}
model_atel_smooth <- gam(spo2_fraction ~ s(atelectasis_percent,k=5),
data=data,
family = quasibinomial(link = logit)
)
```
```{r}
plot(model_atel_smooth)
```
```{r}
summary(model_atel_smooth)
```
```{r}
gam.check(model_atel_smooth)
```
Outliers:
```{r}
#| echo: true
data %>%
mutate(
cooksd = cooks.distance(model_atel_smooth),
outlier = ifelse(cooksd < 4/nrow(data), "keep","delete")
) %>%
filter(outlier=="delete") %>%
dplyr::select(ID,BMI,spo2_VPO,atelectasis_percent,cooksd,outlier) %>%
arrange(desc(cooksd)) %>%
gt()
```
I will remove influential outliers with cooks distance \>0.05 for BMI:
```{r}
#| include: false
# Create backup before removing outliers
data_original <- data
# Remove outliers:
data <- data %>% filter(!ID %in% c("122","140","102"))
```
Likewise, remove influential outliers with cooks distance \>0.05 for atelectasis percent:
```{r}
#| include: false
data <- data %>% filter(!ID %in% c("205","168","114","103"))
```
\pagebreak
# Inverse probability weighting
In order to account for exposure-outcome confounding and also mediator-outcome confounding, inverse probability weighting is a good modelling option since the mediator-outcome confounding affected by the exposure induces collider-stratification bias. Thus, a propensity score will be calculated for both the exposure (BMI) and mediator (atelectasis percent). Inverse probability weights will be obtained from propensity scores and combined into a single weight that will be used to model SpO2.
## Propensity scores and weights
Non-Parametric Covariate Balancing Propensity Score (npcbps) will be obtained to avoid problems in the fitting of the models due to skewed distributions, thereby adopting a distribution-free method for obtaining the weights. Npcbps are directly interpretable as inverse probability weights ([see CBPS documentation](https://search.r-project.org/CRAN/refmans/CBPS/html/npCBPS.html)), reason why the additional step of obtaining inverse weights is not needed with this method.
Weights for exposure (BMI):
```{r}
#| echo: true
data$weight1 <- weightit(BMI ~ age + sex + altitude_cat,
data,
method = "npcbps",
over = FALSE)$weights
```
Weights for mediator (atelectasis percent):
```{r}
#| echo: true
data$weight2 <- weightit(
factor(atelectasis_percent, ordered = TRUE) ~
BMI + age + sex + altitude_cat + asthma + sleep_apnea + COPD,
data,
method = "npcbps")$weights
```
Overall weight:
```{r}
#| echo: true
data <- data %>%
mutate(
weight = weight1*weight2
)
```
Fit IPW model including both BMI and atelectasis percentage:
```{r}
model_plus<-gam(spo2_fraction ~ s(BMI, k=8) +
s(atelectasis_percent,k=5),
data = data,
weights = weight,
family = quasibinomial(link = logit)
)
R2_plus <- summary(model_plus)$r.sq
dev_plus <- summary(model_plus)$dev.expl
```
```{r}
summary(model_plus)
```
```{r}
#| include: true
## Change 'false' for 'true' above to show plots.
plot(model_plus, all.terms=TRUE)
```
```{r}
gam.check(model_plus)
```
Very influential outlier.
```{r}
#| echo: true
data %>%
mutate(
cooksd = cooks.distance(model_plus),
outlier = ifelse(cooksd < 4/nrow(data), "keep","delete")
) %>%
filter(outlier=="delete") %>%
dplyr::select(ID,BMI,spo2_VPO,atelectasis_percent,cooksd,outlier) %>%
arrange(desc(cooksd)) %>%
gt()
```
I will remove this extreme outlier:
```{r}
data <- data %>% filter(!ID %in% c("107"))
```
## BMI only model (unadjusted, unweighted)
```{r}
model_BMI <- gam(spo2_fraction~s(BMI,k=8),
data=data,
family = quasibinomial(link = logit)
)
R2_BMI <- summary(model_BMI)$r.sq
dev_BMI <- summary(model_BMI)$dev.expl
```
```{r}
summary(model_BMI)
```
```{r}
plot(model_BMI)
```
```{r}
#| include: false
## Change 'false' for 'true' above to show plots.
gam.check(model_BMI)
```
## Atelectasis percent model (unadjusted, unweighted)
```{r}
model_atel_smooth <- gam(spo2_fraction ~ s(atelectasis_percent,k=5),
data = data,
family = quasibinomial(link = logit)
)
R2_atel_smooth <- summary(model_atel_smooth)$r.sq
dev_atel_smooth <- summary(model_atel_smooth)$dev.expl
```
```{r}
plot(model_atel_smooth)
```
```{r}
summary(model_atel_smooth)
```
```{r}
#| include: false
## Change 'false' for 'true' above to show plots.
gam.check(model_atel_smooth)
```
## s(BMI) + s(atelectasis percentage), unadjusted, unweighted
Fit model sBMI plus atelectasis percentage:
```{r}
model_atel<-gam(spo2_fraction ~ s(BMI,k=8) +
s(atelectasis_percent,k=5),
data = data,
family = quasibinomial(link = logit)
)
R2_atel <- summary(model_atel)$r.sq
dev_atel <- summary(model_atel)$dev.expl
```
```{r}
summary(model_atel)
```
```{r}
plot(model_atel, all.terms=TRUE)
```
```{r}
#| include: false
## Change 'false' for 'true' above to show plots.
gam.check(model_atel)
```
## Adjusted model BMI
Fit IPW model for BMI. This model accounts for confounders relevant to BMI, after having obtained a balanced pseudopopulation through propensity weighting as detailed earlier.
```{r}
model_adj_BMI <-gam(spo2_fraction ~ s(BMI,k=8),
data = data,
weights = weight1,
family = quasibinomial(link = logit)
)
R2_adj_BMI <- summary(model_adj_BMI)$r.sq
dev_adj_BMI <- summary(model_adj_BMI)$dev.expl
```
```{r}
summary(model_adj_BMI)
```
```{r}
#| include: true
## Change 'false' for 'true' above to show plots.
plot(model_adj_BMI)
```
```{r}
#| include: false
## Change 'false' for 'true' above to show plots.
gam.check(model_adj_BMI)
```
## Adjusted model Atelectasis Percent
Fit IPS model for atelectasis percent:
```{r}
model_adj_atelectasis <-gam(spo2_fraction ~ s(atelectasis_percent,k=5),
data = data,
weights = weight2,
family = quasibinomial(link = logit),
)
R2_adj_atelectasis <- summary(model_adj_atelectasis)$r.sq
dev_adj_atelectasis <- summary(model_adj_atelectasis)$dev.expl
```
```{r}
summary(model_adj_atelectasis)
```
```{r}
plot(model_adj_atelectasis)
```
```{r}
#| include: false
## Change 'false' for 'true' above to show plots.
gam.check(model_adj_atelectasis)
```
## Fully adjusted model (IPW model)
```{r}
model_plus<-gam(spo2_fraction ~ s(BMI, k=8) +
s(atelectasis_percent,k=5),
data = data,
weights = weight,
family = quasibinomial(link = logit)
)
R2_plus <- summary(model_plus)$r.sq
dev_plus <- summary(model_plus)$dev.expl
```
```{r}
summary(model_plus)
```
```{r}
#| include: true
## Change 'false' for 'true' above to show plots.
plot(model_plus, all.terms=TRUE)
```
```{r}
#| include: true
## Change 'false' for 'true' above to show plots.
gam.check(model_plus)
```
Note that there is complete separation of residuals, resembling oxygen categories. This is highly suggestive of this model not being good at explaining variation at higher oxygen levels (i.e. greater than 95%), whereas residuals are nearly randomly distributed at lower oxygen values. I will re-assess this hypothesis by the end of the document and in **Part 8**.
## Test for interaction
```{r}
# This is to explore the effect of a combined smooth term between
# BMI and atelectasis percentage, adjusted for confounders.
model_exp<-gam(spo2_fraction ~ s(BMI, atelectasis_percent),
weights = weight,
data=data,
family = quasibinomial(link = logit)
)
R2_interact <- summary(model_exp)$r.sq
dev_interact <- summary(model_exp)$dev.expl
summary(model_exp)
```
```{r}
gam.check(model_exp)
```
```{r}
plot(model_exp, all.terms = TRUE)
```
```{r}
#| warning: true
vis.gam(model_exp,
view=c("BMI","atelectasis_percent"),
color = "gray",
type = "response",
theta = -45,
plot.type = "persp",
ylab = "Atelectasis percent",
xlab = "Body mass index",
zlab = "SpO2",
main = "Predicted SpO2"
)
```
Not much improvement from a model with an interaction term. This model with an interaction term is very likely fitting noise.
Build a dataframe to compare models:
```{r}
models <- data.frame(
Model = c("empty",
"sBMI",
"atel_smooth",
"sBMI_atel",
"adjusted_BMI",
"adjusted_atelectasis",
"Fully_adjusted",
"Interaction_adjusted"
),
aR2 = c(R2_empty,
R2_BMI,
R2_atel_smooth,
R2_atel,
R2_adj_BMI,
R2_adj_atelectasis,
R2_plus,
R2_interact
),
dev = c(dev_empty,
dev_BMI,
dev_atel_smooth,
dev_atel,
dev_adj_BMI,
dev_adj_atelectasis,
dev_plus,
dev_interact
)
)
```
Models sorted by explained deviance (from higher to lower):
```{r}
models <- models %>% mutate(aR2 = round(aR2,3)*100,
dev = round(dev,3)*100
)
models %>% arrange(desc(dev)) %>% gt()
```
```{r}
#| include: true
## Change 'false' for 'true' above to show plots.
# Models sorted by adjusted R2
models %>% arrange(desc(aR2)) %>% gt()
```
\pagebreak
# Figure SpO2 models
#### Figure 2a: Total effect of BMI (adjusted)
Assessment of residuals. This was done for all models.
```{r}
#| include: true
## Change 'false' for 'true' above to show plots.
# Check residuals:
draw(model_adj_BMI,residuals=TRUE)
```
Now, take the inverse logit function to assess partial effect on mean SpO2.
```{r}
#| include: false
## Change 'false' for 'true' above to show plots.
# Now, take the inverse logit function to assess partial effect on mean SpO2:
draw(model_adj_BMI,
constant = coef(model_adj_BMI)[1],
fun = inv_link(model_adj_BMI)
)
```
Partial effect on mean SpO2:
```{r, fig.width=8, fig.height=6}
#Draw a personalized plot:
plot2a <- draw(model_adj_BMI,
constant = coef(model_adj_BMI)[1],
fun = inv_link(model_adj_BMI),
smooth_col = "cadetblue4"
) +
scale_y_continuous(labels = scales::percent, limits=c(0.78,1)) +
labs(x="Body mass index (kg/m²)",
y = "mean SpO2",
title = "Total effect of BMI",
subtitle=paste0("Deviance explained:"," ",(round(dev_adj_BMI,3)*100),"%"),
tag="A",
caption=NULL) +
theme_bw() +
theme(panel.border = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
axis.text.x = element_text(size=rel(1.2)),
axis.text.y = element_text(size=rel(1.2))
)
plot2a
```
#### Figure 2b: Fully adjusted BMI
```{r}
#| include: false
## Change 'false' for 'true' above to show plots.
# Check residuals:
draw(model_plus,residuals=TRUE, select = "s(BMI)")
```
Partial effect on mean SpO2:
```{r, fig.width=8, fig.height=6}
plot2b <- draw(model_plus, select = "s(BMI)",
constant = coef(model_plus)[1],
fun = inv_link(model_plus),
smooth_col = "cadetblue4"
) +
scale_y_continuous(labels = scales::percent, limits=c(0.78,1)) +
labs(x="Body mass index (kg/m²)",
y = "mean SpO2",
title = "Direct effect of BMI",
subtitle=paste0("Deviance explained:"," ",(round(dev_plus,3)*100),"%"),
tag="B",
caption=NULL) +
theme_bw() +
theme(panel.border = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
axis.text.x = element_text(size=rel(1.2)),
axis.text.y = element_text(size=rel(1.2))
)
plot2b
```
#### Figure 2c: sAtelectasis percent
Check residuals:
```{r}
#| include: false
## Change 'false' for 'true' above to show plots.
# Check residuals:
draw(model_adj_atelectasis, residuals=TRUE)
```
Draw a personalized plot:
```{r, fig.width=8, fig.height=6}
plot2c <- draw(model_adj_atelectasis,
constant = coef(model_adj_atelectasis)[1],
fun = inv_link(model_adj_atelectasis),
smooth_col = "black"
) +
scale_y_continuous(labels = scales::percent, limits=c(0.78,1)) +
labs(x="Atelectasis percent (%)",
y = "mean SpO2",
title = "Total effect of atelectasis",
subtitle=paste0("Deviance explained:"," ",(round(dev_adj_atelectasis,3)*100),"%"),
tag="C",
caption=NULL) +
theme_bw() +
theme(panel.border = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
axis.text.x = element_text(size=rel(1.2)),
axis.text.y = element_text(size=rel(1.2))
)
plot2c
```
#### Figure 2d: Fully adjusted Atelectasis Percent
```{r}
#| include: false
## Change 'false' for 'true' above to show plots.
# Check residuals:
draw(model_plus,residuals=TRUE, select = "s(atelectasis_percent)")
```
Partial effect on mean SpO2:
```{r, fig.width=8, fig.height=6}
plot2d <- draw(model_plus, select = "s(atelectasis_percent)",
constant = coef(model_plus)[1],
fun = inv_link(model_plus),
smooth_col = "black"
) +
scale_y_continuous(labels = scales::percent, limits=c(0.78,1)) +
labs(x="Atelectasis percent (%)",
y = "mean SpO2",
title = "Indirect effect of BMI (mediated by atelectasis)",
subtitle=paste0("Deviance explained:"," ",(round(dev_plus,3)*100),"%"),
tag="D",
caption=NULL) +
theme_bw() +
theme(panel.border = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
axis.text.x = element_text(size=rel(1.2)),
axis.text.y = element_text(size=rel(1.2))
)
plot2d
```
#### Figure 2
```{r, fig.width=10, fig.height=8}
figure2 <- grid.arrange(plot2a, plot2b, plot2c, plot2d, nrow = 2)
```
```{r}
#| include: false
ggsave(
"Figure2.pdf",
plot = figure2,
path = figfolder,
width = 10,
height = 8,
units = "in",
dpi = 1200
)
```
\pagebreak
# Predictions SpO2
These are the predicted SpO2 values in the fully adjusted model (adjusted_plus):
```{r}
#| warning: false
#| echo: true
vis.gam(model_plus,
view=c("BMI","atelectasis_percent"),
color = "gray",
type = "response",
plot.type = "contour",
contour.col = brewer.pal(9, "BuGn"),
nlevels=10,
ylab = "Atelectasis percent (%)",
xlab = "Body mass index (kg/m²)",
main = "Predicted SpO2"
)
```
This figure shows that this model is not able to predict SpO2 values above 96%. The range of predicted values of SpO2 that can be predicted with the data and model created in this study are within 88-96%. Lines correspond to a level of SpO2, so it can be seen that most of these are almost perpendicular to the y axis, meaning that most of the decrease in SpO2 is driven by increasing atelectasis percentage. Nonetheless, lines are not perfectly horizontal, which reflects that there is some residual effect of BMI on SpO2. Furthermore, this model shows that drops in SpO2 are more accentuated at the lower part of atelectasis percentage extension (93% to 96% mostly occur at atelectasis percentage lower than 5%). At SpO2 92% and lower, jumps are not as accentuated and there is a greater effect of increasing BMI as the lines tend to be more inclined. A 3D plot could perhaps allow to visualize these patterns if this is not clear enough from the 2D plot:
```{r}
#| warning: false
vis.gam(model_plus,
view=c("BMI","atelectasis_percent"),
color = "gray",
type = "response",
plot.type = "persp",
theta= -45,
ylab = "Atelectasis percent",
xlab = "Body mass index",
zlab = "SpO2",
main = "Predicted SpO2"
)
```
### Figure 3
The 2D plot was recreated with the accompanying sourced script ***Figure3.R*** which also saves the 3D plot as FigureS5.
```{r}
#| include: false
source("scripts/Figure3.R", local = knitr::knit_global())
```
```{r}
predictions_plot
```
```{r}
observed_plot
```
\pagebreak
# Modelling subsets of low vs high SpO2
As mentioned earlier, there is complete separation of residuals, resembling oxygen categories. Perhaps including these in the model could allow to know the effect of atelectasis and BMI on SpO2 according to different SpO2 categories:
```{r}
#| include: false
data <- data %>%
mutate(spo2_cat = cut(spo2_VPO,
breaks=c(87,95,100),
right=TRUE,
labels=c("≤95",">95")
) %>% fct_rev()
)
```
```{r}
model_plus_oxygen_categories <-gam(spo2_fraction ~ s(BMI, k=8) +
s(atelectasis_percent,k=5) + spo2_cat,
data = data,
weights = weight,
family = quasibinomial(link = logit)
)
R2_plus <- summary(model_plus_oxygen_categories)$r.sq
dev_plus <- summary(model_plus_oxygen_categories)$dev.expl
```
```{r}
summary(model_plus_oxygen_categories)
```
```{r}
#| include: false
## Change 'false' for 'true' above to show plots.
plot(model_plus_oxygen_categories, all.terms=TRUE)
```
```{r}
#| include: true
## Change 'false' for 'true' above to show plots.
gam.check(model_plus_oxygen_categories)
```
I will therefore model separately by splitting the dataset into participants with SpO2 lower than or equal to 95 vs those with SpO2 higher than 95. These analyses will be presented in **Part 8**.
```{r}
#Save dataset
write.csv(
data,
file = paste0(psfolder,"/atelectasis_processed.csv"),
row.names=FALSE
)
```
\pagebreak
# Package References
```{r}
#| include: false
report::cite_packages(session)
```
- Auguie B (2017). *gridExtra: Miscellaneous Functions for "Grid" Graphics*. R package version 2.3, <https://CRAN.R-project.org/package=gridExtra>.
- Bates D, Maechler M, Jagan M (2024). *Matrix: Sparse and Dense Matrix Classes and Methods*. R package version 1.6-5, <https://CRAN.R-project.org/package=Matrix>.
- Campitelli E (2021). *metR: Tools for Easier Analysis of Meteorological Fields*. doi:10.5281/zenodo.2593516 <https://doi.org/10.5281/zenodo.2593516>, R package version 0.15.0, <https://eliocamp.github.io/metR/>.
- Fong C, Ratkovic M, Imai K (2022). *CBPS: Covariate Balancing Propensity Score*. R package version 0.23, <https://CRAN.R-project.org/package=CBPS>.
- Friedman J, Tibshirani R, Hastie T (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” *Journal of Statistical Software*, *33*(1), 1-22. doi:10.18637/jss.v033.i01 <https://doi.org/10.18637/jss.v033.i01>. Simon N, Friedman J, Tibshirani R, Hastie T (2011). “Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.” *Journal of Statistical Software*, *39*(5), 1-13. doi:10.18637/jss.v039.i05 <https://doi.org/10.18637/jss.v039.i05>. Tay JK, Narasimhan B, Hastie T (2023). “Elastic Net Regularization Paths for All Generalized Linear Models.” *Journal of Statistical Software*, *106*(1), 1-31. doi:10.18637/jss.v106.i01 <https://doi.org/10.18637/jss.v106.i01>.
- Gilbert P, Varadhan R (2019). *numDeriv: Accurate Numerical Derivatives*. R package version 2016.8-1.1, <https://CRAN.R-project.org/package=numDeriv>.
- Greifer N (2024). *WeightIt: Weighting for Covariate Balance in Observational Studies*. R package version 1.0.0, <https://CRAN.R-project.org/package=WeightIt>.
- Grolemund G, Wickham H (2011). “Dates and Times Made Easy with lubridate.” *Journal of Statistical Software*, *40*(3), 1-25. <https://www.jstatsoft.org/v40/i03/>.
- Ho D, Imai K, King G, Stuart E (2011). “MatchIt: Nonparametric Preprocessing for Parametric Causal Inference.” *Journal of Statistical Software*, *42*(8), 1-28. doi:10.18637/jss.v042.i08 <https://doi.org/10.18637/jss.v042.i08>.
- Iannone R, Cheng J, Schloerke B, Hughes E, Lauer A, Seo J (2024). *gt: Easily Create Presentation-Ready Display Tables*. R package version 0.10.1, <https://CRAN.R-project.org/package=gt>.
- Makowski D, Lüdecke D, Patil I, Thériault R, Ben-Shachar M, Wiernik B (2023). “Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption.” *CRAN*. <https://easystats.github.io/report/>.
- Müller K, Wickham H (2023). *tibble: Simple Data Frames*. R package version 3.2.1, <https://CRAN.R-project.org/package=tibble>.
- Neuwirth E (2022). *RColorBrewer: ColorBrewer Palettes*. R package version 1.1-3, <https://CRAN.R-project.org/package=RColorBrewer>.
- Pinheiro J, Bates D, R Core Team (2023). *nlme: Linear and Nonlinear Mixed Effects Models*. R package version 3.1-164, <https://CRAN.R-project.org/package=nlme>. Pinheiro JC, Bates DM (2000). *Mixed-Effects Models in S and S-PLUS*. Springer, New York. doi:10.1007/b98882 <https://doi.org/10.1007/b98882>.
- R Core Team (2024). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.
- Rich B (2023). *table1: Tables of Descriptive Statistics in HTML*. R package version 1.4.3, <https://CRAN.R-project.org/package=table1>.
- Rinker TW, Kurkiewicz D (2018). *pacman: Package Management for R*. version 0.5.0, <http://github.com/trinker/pacman>.
- Simpson G (2024). *gratia: Graceful ggplot-Based Graphics and Other Functions for GAMs Fitted using mgcv*. R package version 0.8.2, <https://gavinsimpson.github.io/gratia/>.
- Venables WN, Ripley BD (2002). *Modern Applied Statistics with S*, Fourth edition. Springer, New York. ISBN 0-387-95457-0, <https://www.stats.ox.ac.uk/pub/MASS4/>.
- Venables WN, Ripley BD (2002). *Modern Applied Statistics with S*, Fourth edition. Springer, New York. ISBN 0-387-95457-0, <https://www.stats.ox.ac.uk/pub/MASS4/>.
- Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, <https://ggplot2.tidyverse.org>.
- Wickham H (2023). *forcats: Tools for Working with Categorical Variables (Factors)*. R package version 1.0.0, <https://CRAN.R-project.org/package=forcats>.
- Wickham H (2023). *stringr: Simple, Consistent Wrappers for Common String Operations*. R package version 1.5.1, <https://CRAN.R-project.org/package=stringr>.
- Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” *Journal of Open Source Software*, *4*(43), 1686. doi:10.21105/joss.01686 <https://doi.org/10.21105/joss.01686>.
- Wickham H, François R, Henry L, Müller K, Vaughan D (2023). *dplyr: A Grammar of Data Manipulation*. R package version 1.1.4, <https://CRAN.R-project.org/package=dplyr>.
- Wickham H, Henry L (2023). *purrr: Functional Programming Tools*. R package version 1.0.2, <https://CRAN.R-project.org/package=purrr>.
- Wickham H, Hester J, Bryan J (2024). *readr: Read Rectangular Text Data*. R package version 2.1.5, <https://CRAN.R-project.org/package=readr>.
- Wickham H, Vaughan D, Girlich M (2024). *tidyr: Tidy Messy Data*. R package version 1.3.1, <https://CRAN.R-project.org/package=tidyr>.
- Wood SN (2011). “Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models.” *Journal of the Royal Statistical Society (B)*, *73*(1), 3-36. Wood S, N., Pya, S"afken B (2016). “Smoothing parameter and model selection for general smooth models (with discussion).” *Journal of the American Statistical Association*, *111*, 1548-1575. Wood SN (2004). “Stable and efficient multiple smoothing parameter estimation for generalized additive models.” *Journal of the American Statistical Association*, *99*(467), 673-686. Wood S (2017). *Generalized Additive Models: An Introduction with R*, 2 edition. Chapman and Hall/CRC. Wood SN (2003). “Thin-plate regression splines.” *Journal of the Royal Statistical Society (B)*, *65*(1), 95-114.
```{r}
#| include: false
# Run this chunk if you wish to clear your environment and unload packages.
pacman::p_unload(negate = TRUE)
rm(data, df_pred, figfolder, tabfolder, figure2, Figure3, session)
rm(list=setdiff(ls(pattern = "plot"), lsf.str()))
rm(list=setdiff(ls(pattern = "^dev"), lsf.str()))
rm(list=setdiff(ls(pattern = "^model"), lsf.str()))
rm(list=setdiff(ls(pattern = "^R2"), lsf.str()))
rm(list=setdiff(ls(pattern = "^tab_"), lsf.str()))
```