-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig.py
126 lines (117 loc) · 5.65 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import pandas as pd
import sys
import os
sys.path.append(os.path.abspath('../'))
from utils.functions import kld, margin_loss, spread_loss, mean_squared_error, sum_squared_errors, information_gain_wrapper, normalized_scanpath_saliency, cc, similarity, auc_judd, auc_borji_wrapper, sAUC_wrapper, sNSS_wrapper
from utils.callbacks import VariableScheduler
from keras.optimizers import Adam
from keras.callbacks import LearningRateScheduler
import keras.backend as K
import tensorflow as tf
import cv2
# --- GLOBAL --- #
setup = 'experiments/v0'
path_output = os.path.join('/home/javier/TFM/results', setup)
path_features = '/home/javier/TFM/heavy/features'
path_conditions = '/home/javier/TFM/heavy/DREYEVE_DATA/dr(eye)ve_design.txt'
path_gt = '/home/javier/TFM/heavy/gt'
###
path_checkpoints = 'checkpoints'
path_logs = 'logs'
path_tests = 'tests'
path_predictions = 'predictions'
path_rgb = 'rgb'
path_of = 'of'
path_segmentation = 'segmentation_probabilities'
total_videos = 74
total_frames_each_video = 7500 # GT has 7500
h, w = 112, 112
h_gt, w_gt = 112, 112
# SUBSETS
registry_ids = pd.read_csv('/home/javier/TFM/results/registries/registry.csv')
# Train, val, test, predict
mask_train_val = registry_ids['video_id'].isin(np.arange(1, 37 + 1))
mask_val = registry_ids['frame_id'].isin(np.arange(3500 + 1, 4000 + 1))
# Train
registry_ids_train = registry_ids[mask_train_val & ~mask_val]
# Val
registry_ids_val = registry_ids[mask_train_val & mask_val]
# Test
registry_ids_test = registry_ids[~mask_train_val]
# Predict
registry_ids_predict = registry_ids_test
# TRAIN + TEST + PREDICT
use_multiprocessing = True # True is thread safe when workers > 0
workers = 8
max_queue_size = 32
# TRAIN
monitor = 'val_loss'
mode = 'min'
filename_save = 'weights.h5'
save_best_only = True
lr = 0.0001
lr_decay = 0.99
batch_size = 32 # single-feature: 32. multi-feature: 8
epochs = 50
initial_epoch = 0
steps_per_epoch = 512 # Number of train batches: if None it takes all
validation_steps = 512 # Number of val batches: if None it takes all
optimizer = Adam(lr = lr)
custom_callbacks = [LearningRateScheduler(schedule = lambda epoch: lr * (lr_decay ** epoch))]
data_augmentation_config = {
'rate': 0.6, # Probability of appling augmentation to sample
'crop': {
'resize_ratio_params': {'low': 1, 'high': 2},
'slack_ratio': 1 # From tight to center (0) to all search space (1)
},
'mirror': {'prob': 0.5} # Mirror along W axis
}
# COMPILE
loss = kld
loss_weights = None
metrics = [kld]
# TEST
steps = len(registry_ids_test) # Number of test batches: if None it takes all [TEST BATCH_SIZE IS 1]
# PREDICT
steps_pred = len(registry_ids_predict)
shuffle_pred = True
do_pipeline_predictions = True # Losses + Metrics + VAM.png
do_pipeline_hidden = False # Data
layer_names = []
op_names = []
# CAPSNET (design params: TRAIN + TEST + PREDICT)
load_weights_by_name = True
freeze_loaded_weights = False
pretrain_config = [
'path_to_pretrained_weights_vgg.h5',
]
fusion_config = []
capsnet_config = {
'inputs': {'rgb': {'norm': 'mean_3std_clip'}, 'of': {'norm': 'mean_3std_clip'}, 'seg': {'norm': 'probability'}},
'branch': {
'shortcuts': {3: 14, 6: 11},
'blocks': [
{'op': 'Conv2D', 'params': {'name': 'branch_conv1', 'filters': 96, 'kernel_size': 7, 'padding': 'same', 'strides': 1, 'activation': 'relu'}},
{'op': 'MaxPooling2D', 'params': {'name': 'branch_maxpool1', 'pool_size': 3, 'strides': 2}},
{'op': 'Dropout', 'params': {'name': 'branch_dropout1', 'rate': 0.5}},
{'op': 'Conv2D', 'params': {'name': 'branch_conv2', 'filters': 256, 'kernel_size': 5, 'padding': 'same', 'strides': 1, 'activation': 'relu'}},
{'op': 'MaxPooling2D', 'params': {'name': 'branch_maxpool2', 'pool_size': 3, 'strides': 2}},
{'op': 'Dropout', 'params': {'name': 'branch_dropout2', 'rate': 0.5}},
{'op': 'Conv2D', 'params': {'name': 'branch_conv3', 'filters': 512, 'kernel_size': 3, 'padding': 'same', 'strides': 1, 'activation': 'relu'}},
{'op': 'Conv2D', 'params': {'name': 'branch_conv4', 'filters': 512, 'kernel_size': 5, 'padding': 'same', 'strides': 1, 'activation': 'relu'}},
{'op': 'Conv2D', 'params': {'name': 'branch_conv5', 'filters': 512, 'kernel_size': 5, 'padding': 'same', 'strides': 1, 'activation': 'relu'}},
# Encoded up to this point
{'op': 'Conv2D', 'params': {'name': 'branch_conv6', 'filters': 512, 'kernel_size': 5, 'padding': 'same', 'strides': 1, 'activation': 'relu'}},
{'op': 'Conv2D', 'params': {'name': 'branch_conv7', 'filters': 512, 'kernel_size': 5, 'padding': 'same', 'strides': 1, 'activation': 'relu'}},
{'op': 'Conv2D', 'params': {'name': 'branch_conv8', 'filters': 512, 'kernel_size': 3, 'padding': 'same', 'strides': 1, 'activation': 'relu'}},
{'op': 'Dropout', 'params': {'name': 'branch_dropout3', 'rate': 0.5}},
{'op': 'BilinearUpsampling', 'params': {'name': 'branch_bilinearupsampling1', 'output_size': (55, 55)}},
{'op': 'Conv2D', 'params': {'name': 'branch_conv9', 'filters': 256, 'kernel_size': 5, 'padding': 'same', 'strides': 1, 'activation': 'relu'}},
{'op': 'Dropout', 'params': {'name': 'branch_dropout4', 'rate': 0.5}},
{'op': 'BilinearUpsampling', 'params': {'name': 'branch_bilinearupsampling2', 'output_size': (112, 112)}},
{'op': 'Conv2D', 'params': {'name': 'branch_conv10', 'filters': 96, 'kernel_size': 7, 'padding': 'same', 'strides': 1, 'activation': 'relu'}},
{'op': 'Conv2D', 'params': {'name': 'branch_conv11', 'filters': 1, 'kernel_size': 1, 'padding': 'same', 'strides': 1, 'activation': 'linear'}},
]
}
}