-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStringDiff2.java
161 lines (132 loc) · 6.38 KB
/
StringDiff2.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/** This class highlights text differences between two plain strings by generating html fragment to show changes using longest common subsequence algorithm
version 1.0, 24-11-2022, first release
version 1.1, 17-11-2023, Improved with Hirschberg algorithm to use linear amount of memory
*/
public class StringDiff2 {
private static final String INSERT_COLOR = "#00ff66";
private static final String DELETE_COLOR = "#ff9933";
private static final int lcs_threshold = 1;//minimum threshold for longest common subsequence
public static void main(String[] args) {
String text1 = "Do not change this section. Please check any misqelling! Note that this section is obsolete.";
String text2 = "New section added. Do not change this section. Please check any mispelling!";
String result = markTextDiff2(text1, text2, INSERT_COLOR, DELETE_COLOR);
System.out.println(result);
}
//highlights with htlm tags the changes from text1 to text2 using longest common subsequence algorithm
public static String markTextDiff2(String text1, String text2, String insertColor, String deleteColor) {
String lcs = longestCommonSubsequence(text1, text2);
StringBuilder stringBuilder = new StringBuilder();
int cur1 = 0, cur2 = 0;//cursors
for (int k = 0; k < lcs.length(); k++) {
char common = lcs.charAt(k);
int idx1 = text1.indexOf(common, cur1);
int idx2 = text2.indexOf(common, cur2);
if (idx1 > cur1) {
stringBuilder.append("<del style='background-color:").append(deleteColor).append("'>").append(text1.substring(cur1, idx1)).append("</del>");
}
if (idx2 > cur2) {
stringBuilder.append("<ins style='background-color:").append(insertColor).append("'>").append(text2.substring(cur2, idx2)).append("</ins>");
}
stringBuilder.append(common);
cur1 = idx1 + 1;
cur2 = idx2 + 1;
}
if (cur1 < text1.length()) {
stringBuilder.append("<del style='background-color:").append(deleteColor).append("'>").append(text1.substring(cur1)).append("</del>");
}
if (cur2 < text2.length()) {
stringBuilder.append("<ins style='background-color:").append(insertColor).append("'>").append(text2.substring(cur2)).append("</ins>");
}
return stringBuilder.toString();
}
/* This algorithm uses a quadratic amount of memory
public static String longestCommonSubsequence(String text1, String text2) {
//credit to: https://rosettacode.org/wiki/Longest_common_subsequence#Java
int[][] lengths = new int[text1.length() + 1][text2.length() + 1];
// row 0 and column 0 are initialized to 0 already
for (int i = 0; i < text1.length(); i++)
for (int j = 0; j < text2.length(); j++)
if (text1.charAt(i) == text2.charAt(j))
lengths[i+1][j+1] = lengths[i][j] + 1;
else
lengths[i+1][j+1] = Math.max(lengths[i+1][j], lengths[i][j+1]);
// get the substring out from the matrix
StringBuffer sb = new StringBuffer();
for (int x = text1.length(), y = text2.length(); x != 0 && y != 0; ) {
if (lengths[x][y] == lengths[x-1][y])
x--;
else if (lengths[x][y] == lengths[x][y-1])
y--;
else {
x--;
y--;
assert text1.charAt(x) == text2.charAt(y);
sb.append(text1.charAt(x));
}
}
return sb.reverse().toString();
}
*/
//Hirschberg algorithm, code is imported from package org.apache.commons.text.similarity, licensed to the Apache Software Foundation (ASF)
//The Hirschberg algorithm uses a linear amount of memory
//reference: https://commons.apache.org/proper/commons-text/index.html
private static String longestCommonSubsequence(final String left, final String right) {
final int m = left.length();
final int n = right.length();
final StringBuilder out = new StringBuilder();
if (m == 1) { // Handle trivial cases, as per the paper
if (right.contains(left)) //left contains one and only one character
out.append(left);
} else if (n > 0 && m > 1) {
final int mid = m / 2; // Find the middle point
final String leftFirstPart = left.substring(0, mid);
final String leftSecondPart = left.substring(mid, m);
// Step 3 of the algorithm: two calls to Algorithm B
final int[] l1 = algorithmB(leftFirstPart, right);
final int[] l2 = algorithmB(reverse(leftSecondPart), reverse(right));
// Find k, as per the Step 4 of the algorithm
int k = 0;
int t = 0;
for (int j = 0; j <= n; j++) {
final int s = l1[j] + l2[n - j];
if (t < s) {
t = s;
k = j;
}
}
// Step 5: solve simpler problems, recursively
out.append(longestCommonSubsequence(leftFirstPart, right.substring(0, k)));
out.append(longestCommonSubsequence(leftSecondPart, right.substring(k, n)));
}
return out.toString();
}
private static String reverse(final String s) {
return new StringBuilder(s).reverse().toString();
}
private static int[] algorithmB(final String left, final String right) {
final int m = left.length();
final int n = right.length();
// Creating an array for storing two rows of DP table
final int[][] dpRows = new int[2][1 + n];
for (int i = 1; i <= m; i++) {
// K(0, j) <- K(1, j) [j = 0...n], as per the paper:
// Since we have references in Java, we can swap references instead of literal copying.
// We could also use a "binary index" using modulus operator, but directly swapping the
// two rows helps readability and keeps the code consistent with the algorithm description
// in the paper.
final int[] temp = dpRows[0];
dpRows[0] = dpRows[1];
dpRows[1] = temp;
for (int j = 1; j <= n; j++) {
if (left.charAt(i - 1) == right.charAt(j - 1)) {
dpRows[1][j] = dpRows[0][j - 1] + 1;
} else {
dpRows[1][j] = Math.max(dpRows[1][j - 1], dpRows[0][j]);
}
}
}
// LL(j) <- K(1, j) [j=0...n], as per the paper:
// We don't need literal copying of the array, we can just return the reference
return dpRows[1];
}
}