-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdenoising_autoencoder.py
97 lines (74 loc) · 2.78 KB
/
denoising_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 26 12:42:05 2020
@author: Jaspreet Singh
"""
import torch
import numpy as np
from torchvision import datasets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
transform = transforms.ToTensor()
train_data = datasets.MNIST(root='data' , train=True ,download=True ,transform=transform)
test_data = datasets.MNIST(root='data' , train=False ,download=True ,transform=transform)
batchsize = 20
train_loader = torch.utils.data.DataLoader(train_data,batch_size=batchsize)
test_loader = torch.utils.data.DataLoader(test_data,batch_size = batchsize)
images , labels = iter(train_loader).next()
images = images.numpy()
img = np.squeeze(images[0]) #makes (28,28,1) -> (28,28)
#plt.imshow(img)
#plt.show()
import torch.nn as nn
import torch.nn.functional as F
class ConvDenoiser(nn.Module):
def __init__(self):
super(ConvDenoiser, self).__init__()
#encoder
self.conv1 = nn.Conv2d(1,32,3,padding =1)
self.conv2 = nn.Conv2d(32,16 ,3,padding = 1)
self.conv3 = nn.Conv2d(16,8, 3, padding = 1)
self.pool = nn.MaxPool2d(2,2) # kernal and stride
#decoder
self.t_conv1 = nn.ConvTranspose2d(8,8, 3,stride=2)
self.t_conv2 = nn.ConvTranspose2d(8,16,2,stride=2)
self.t_conv3 = nn.ConvTranspose2d(16 , 32 , 2, stride=2)
self.conv_out = nn.Conv2d(32,1, 3, padding=1)
def forward(self,x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = F.relu(self.conv3(x))
x = self.pool(x)
x = F.relu(self.t_conv1(x))
x = F.relu(self.t_conv2(x))
x = F.relu(self.t_conv3(x))
x = F.sigmoid(self.conv_out(x))
return x
model = ConvDenoiser()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(),lr=0.01)
n_epochs = 20
noise_factor = 0.5
for epoch in range(n_epochs):
train_loss = 0.0
for data in train_loader:
images , _ = data
noisy_imgs = images + noise_factor*torch.randn(*images.shape)
noisy_imgs = np.clip(noisy_imgs,0. , 1.)
optimizer.zero_grad()
outputs = model(noisy_imgs)
loss = criterion(outputs,images)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss = train_loss/len(train_loader)
print('epoch: {epoch}\t training loss : {trainloss}'.format(**{'epoch':epoch,'trainloss':train_loss}))
images,_ = iter(train_loader).next()
noisy_imgs = images + noise_factor*torch.randn(*images.shape)
noisy_imgs = np.clip(noisy_imgs,0. , 1.)
plt.imshow(np.squeeze(noisy_imgs[0]))
plt.show()
plt.imshow(np.squeeze(images[0]))
plt.show()