-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSparseAE.py
76 lines (58 loc) · 2.14 KB
/
SparseAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 2 21:46:00 2020
@author: Jaspreet Singh
"""
import torch
import numpy as np
from torchvision import datasets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
transform = transforms.ToTensor()
train_data = datasets.MNIST(root='data' , train=True ,download=True ,transform=transform)
test_data = datasets.MNIST(root='data' , train=False ,download=True ,transform=transform)
batchsize = 20
train_loader = torch.utils.data.DataLoader(train_data,batch_size=batchsize)
test_loader = torch.utils.data.DataLoader(test_data,batch_size = batchsize)
images , labels = iter(train_loader).next()
images = images.numpy()
import torch.nn as nn
import torch.nn.functional as F
class SparseAE(nn.Module):
def __init__(self):
super(SparseAE,self).__init__()
self.input = nn.Linear(28*28,128)
self.hidden = nn.Linear(128,28*28)
def forward(self,x):
x = x.view(-1,28*28)
x = F.relu(self.input(x))
x= F.sigmoid(self.hidden(x))
return x
model = SparseAE()
criterion = nn.L1Loss()
optimizer = torch.optim.Adam(model.parameters(),lr=0.001)
n_epochs = 20
noise_factor = 0.5
for epoch in range(n_epochs):
train_loss = 0.0
for data in train_loader:
images , _ = data
noisy_imgs = images + noise_factor*torch.randn(*images.shape)
noisy_imgs = np.clip(noisy_imgs,0. , 1.)
noisy_imgs = noisy_imgs.view(-1,28*28)
optimizer.zero_grad()
outputs = model(noisy_imgs)
loss = criterion(outputs,images.view(-1,28*28))
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss = train_loss/len(train_loader)
print('epoch: {epoch}\t training loss : {trainloss}'.format(**{'epoch':epoch,'trainloss':train_loss}))
images,_ = iter(train_loader).next()
noisy_imgs = images + noise_factor*torch.randn(*images.shape)
noisy_imgs = np.clip(noisy_imgs,0. , 1.)
noisy_imgs = noisy_imgs.view(-1,28*28)
outputs = model(noisy_imgs)
output = outputs[0]
plt.imshow(output.view(28,28).detach())
plt.show()