-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path08_Reliability.Rmd
98 lines (66 loc) · 3.5 KB
/
08_Reliability.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Reliability Module
## Classical Single-Test Reliability Analysis
An example from Field (2018 pp. 795-796):
"I have noticed that a lot of students become very stressed about SPSS Statistics. Imagine that I wanted to design a questionnaire to measure a trait that I termed ‘SPSS anxiety’. I devised a questionnaire to measure various aspects of students’ anxiety towards learning SPSS, the SAQ. I generated questions based on interviews with anxious and non-anxious students and came up with 23 possible questions to include. Each question was a statement followed by a five-point Likert scale: ‘strongly disagree’, ‘disagree’, ‘neither agree nor disagree’, ‘agree’ and ‘strongly agree’ (SD, D, N, A and SA, respectively). What’s more, I wanted to know whether anxiety about SPSS could be broken down into specific forms of anxiety. In other words, what latent variables contribute to anxiety about SPSS? With a little help from a few lecturer friends I collected 2571 completed questionnaires."
**Note:** Only questions 1, 4, 5, 6, 7, 8, and 10 have been used to simplify the analysis.
### Results Overview {#ResultsReli}
```{r echo=F}
ResultsReli <- matrix(c(0.7574, 0.758, 0.7574, 0.7574, 0.7574),
ncol=5, byrow = T)
colnames(ResultsReli) <- c('JASP', 'SPSS', 'SAS', 'Minitab', 'R')
rownames(ResultsReli) <- c('Cronbachs $\\alpha$' )
knitr::kable(head(ResultsReli, 20), caption = "Result Overview Reliability Analysis", booktabs = T)
```
### JASP {#jaspReli}
```{r reliJASP, echo=FALSE, fig.cap="\\label{fig:reliJASP}JASP Output for Reliability Analysis"}
knitr::include_graphics('Screenshots/Reliability/ReliabilityJASP.PNG')
```
### SPSS {#spssReli}
```{r eval=F}
DATASET ACTIVATE DataSet1.
RELIABILITY
/VARIABLES=Question_01 Question_04 Question_05 Question_06 Question_07 Question_08 Question_10
/SCALE('ALL VARIABLES') ALL
/MODEL=ALPHA
/STATISTICS=DESCRIPTIVE SCALE
/SUMMARY=TOTAL MEANS.
```
```{r reliSPSS, echo=FALSE, fig.cap="\\label{fig:reliSPSS}SPSS Output for Reliability Analysis"}
knitr::include_graphics('Screenshots/Reliability/ReliabilitySPSS1.PNG')
```
```{r reliSPSS2, echo=FALSE, fig.cap="\\label{fig:reliSPSS2}SPSS Output for Reliability Analysis"}
knitr::include_graphics('Screenshots/Reliability/ReliabilitySPSS2.PNG')
```
### SAS {#sasReli}
```{r eval=F}
PROC CORR DATA=work.Reliability ALPHA;
VAR Q1 Q4 Q5 Q6 Q7 Q8 Q10;
RUN;
```
```{r reliSAS, echo=FALSE, fig.cap="\\label{fig:reliSAS}SAS Output for Reliability Analysis"}
knitr::include_graphics('Screenshots/Reliability/ReliabilitySAS.PNG')
```
### Minitab {#minitabReli}
```{r reliMinitab, echo=FALSE, fig.cap="\\label{fig:reliMinitab}Minitab Output for Reliability Analysis"}
knitr::include_graphics('Screenshots/Reliability/ReliabilityMinitab1.PNG')
```
```{r reliMinitab2, echo=FALSE, fig.cap="\\label{fig:reliMinitab2}Minitab Output for Reliability Analysis"}
knitr::include_graphics('Screenshots/Reliability/ReliabilityMinitab2.PNG')
```
### R {#rReli}
```{r echo=F}
reli.data <- read.csv("Datasets/Reliability.csv", sep=",")
```
```{r}
# library(psych)
QuestionSelection <- reli.data[c(1,4,5,6,7,8,10)]
analysis <- psych::alpha(QuestionSelection, cumulative = T)
analysis$total
analysis$item.stats
analysis$alpha.drop
analysis$total$raw_alpha
```
### Remarks {#remarksReli}
All differences in results between the software are due to rounding. For this analysis JASP 0.15 was used.
### References {#refReli}
Field, A. (2018). *Discovering statistics using IBM SPSS statistics*. Los Angeles, CA: SAGE.