-
Notifications
You must be signed in to change notification settings - Fork 0
/
references.bib
213 lines (195 loc) · 7.09 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
@article{new-drug-cost,
title={Estimated research and development investment needed to bring a new medicine to market, 2009-2018},
author={Wouters, Olivier J and McKee, Martin and Luyten, Jeroen},
journal={Jama},
volume={323},
number={9},
pages={844--853},
year={2020},
publisher={American Medical Association}
}
@article{phase3-cost,
title={Estimated costs of pivotal trials for novel therapeutic agents approved by the US Food and Drug Administration, 2015-2016},
author={Moore, Thomas J and Zhang, Hanzhe and Anderson, Gerard and Alexander, G Caleb},
journal={JAMA internal medicine},
volume={178},
number={11},
pages={1451--1457},
year={2018},
publisher={American Medical Association}
}
@article{franklin2021-synthetic-trial,
title={Emulating randomized clinical trials with nonrandomized real-world evidence studies: first results from the RCT DUPLICATE initiative},
author={Franklin, Jessica M and Patorno, Elisabetta and Desai, Rishi J and Glynn, Robert J and Martin, David and Quinto, Kenneth and Pawar, Ajinkya and Bessette, Lily G and Lee, Hemin and Garry, Elizabeth M and others},
journal={Circulation},
volume={143},
number={10},
pages={1002--1013},
year={2021},
publisher={Am Heart Assoc}
}
@article{original-PS-paper,
title={The central role of the propensity score in observational studies for causal effects},
author={Rosenbaum, Paul R and Rubin, Donald B},
journal={Biometrika},
volume={70},
number={1},
pages={41--55},
year={1983},
publisher={Oxford University Press}
}
@article{varga2023-confounding-observational,
title={Dealing with confounding in observational studies: A scoping review of methods evaluated in simulation studies with single-point exposure},
author={Varga, Anita Natalia and Guevara Morel, Alejandra Elizabeth and Lokkerbol, Joran and van Dongen, Johanna Maria and van Tulder, Maurits Willem and Bosmans, Judith Ekkina},
journal={Statistics in Medicine},
volume={42},
number={4},
pages={487--516},
year={2023},
publisher={Wiley Online Library}
}
@article{austin2011-intro-PS,
title={An introduction to propensity score methods for reducing the effects of confounding in observational studies},
author={Austin, P},
journal={Multivariate behavioral research},
volume={46},
number={3},
pages={399--424},
year={2011},
publisher={Taylor \& Francis}
}
@article{little2000-potential-outcomes,
title={Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches},
author={Little, Roderick J and Rubin, Donald B},
journal={Annual review of public health},
volume={21},
number={1},
pages={121--145},
year={2000},
publisher={Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA}
}
@article{rubin2005causal,
title={Causal inference using potential outcomes: Design, modeling, decisions},
author={Rubin, Donald B},
journal={Journal of the American Statistical Association},
volume={100},
number={469},
pages={322--331},
year={2005},
publisher={Taylor \& Francis}
}
@article{deb2016-PS-review,
title={A review of propensity-score methods and their use in cardiovascular research},
author={Deb, Saswata and Austin, Peter C and Tu, Jack V and Ko, Dennis T and Mazer, C David and Kiss, Alex and Fremes, Stephen E},
journal={Canadian Journal of Cardiology},
volume={32},
number={2},
pages={259--265},
year={2016},
publisher={Elsevier}
}
@article{austin2014-compare-matching-methods,
title={A comparison of 12 algorithms for matching on the propensity score},
author={Austin, P},
journal={Statistics in medicine},
volume={33},
number={6},
pages={1057--1069},
year={2014},
publisher={Wiley Online Library}
}
@article{mcdonald2013-matching-figure,
title={Behind the numbers: propensity score analysis—a primer for the diagnostic radiologist},
author={McDonald, Robert J and McDonald, Jennifer S and Kallmes, David F and Carter, Rickey E},
journal={Radiology},
volume={269},
number={3},
pages={640--645},
year={2013},
publisher={Radiological Society of North America}
}
@article{chen2022-greedy-vs-optimal-match-figure,
title={Best practice guidelines for propensity score methods in medical research: consideration on theory, implementation, and reporting. A review},
author={Chen, Jeffrey W and Maldonado, David R and Kowalski, Brooke L and Miecznikowski, Kara B and Kyin, Cynthia and Gornbein, Jeffrey A and Domb, Benjamin G},
journal={Arthroscopy: The Journal of Arthroscopic \& Related Surgery},
volume={38},
number={2},
pages={632--642},
year={2022},
publisher={Elsevier}
}
@article{austin2011-optimal-caliper-width,
title={Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies},
author={Austin, P},
journal={Pharmaceutical statistics},
volume={10},
number={2},
pages={150--161},
year={2011},
publisher={Wiley Online Library}
}
@article{harder2010,
title={Propensity score techniques and the assessment of measured covariate balance to test causal associations in psychological research.},
author={Harder, V},
journal={Psychological methods},
volume={15},
number={3},
pages={234},
year={2010},
publisher={American Psychological Association}
}
@article{austin2014-PS-survival,
title={The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments},
author={Austin, P},
journal={Statistics in medicine},
volume={33},
number={7},
pages={1242--1258},
year={2014},
publisher={Wiley Online Library}
}
@article{lu2019,
title={Good statistical practice in utilizing real-world data in a comparative study for premarket evaluation of medical devices},
author={Lu, N},
journal={Journal of biopharmaceutical statistics},
volume={29},
number={4},
pages={580--591},
year={2019},
publisher={Taylor \& Francis}
}
@article{austin2016-PS-survival,
title={The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: a simulation study},
author={Austin, P},
journal={Statistical methods in medical research},
volume={25},
number={5},
pages={2214--2237},
year={2016},
publisher={SAGE Publications Sage UK: London, England}
}
@article{lalonde1986,
title={Evaluating the econometric evaluations of training programs with experimental data},
author={LaLonde, Robert J},
journal={The American economic review},
pages={604--620},
year={1986},
publisher={JSTOR}
}
@article{dehejia1999,
title={Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs},
author={Dehejia, Rajeev H and Wahba, Sadek},
journal={Journal of the American statistical Association},
volume={94},
number={448},
pages={1053--1062},
year={1999},
publisher={Taylor \& Francis}
}
@article{matchit,
title={MatchIt: nonparametric preprocessing for parametric causal inference},
author={Stuart, Elizabeth},
journal={Journal of statistical software},
year={2011},
publisher={University of California, Los Angeles}
}