-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathtrain.py
executable file
·239 lines (205 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os, sys
sys.path.append(os.getcwd())
import click
import time
import functools
import pdb
import numpy as np
from pathlib import Path
import torch
import torchvision
from torch import optim
from torchvision import transforms
from models.wgan import *
from training_utils import *
import libs as lib
import libs.plot
from tensorboardX import SummaryWriter
# to fix png loading
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from timeit import default_timer as timer
# Some public testing data
# lsun lmdb data set can be download via https://github.com/fyu/lsun
# ImageNet (64x64) at http://image-net.org/small/download.php
@click.command()
@click.option('--train_dir', default=None, help='Data path for training')
@click.option('--validation_dir', default=None, help='Data path for valication')
@click.option('--image_data_type', default="image_folder", type=click.Choice(["lsun", "image_folder"]), help='If you are using lsun images from lsun lmdb, use lsun. If you use your own data in a folder, then use "image_folder". If you use lmdb, you\'ll need to write the loader by yourself. Please check load_data function')
@click.option('--output_path', default=None, help='Output path where result (.e.g drawing images, cost, chart) will be stored')
@click.option('--dim', default=64, help='Model dimensionality or image resolution, tested with 64.')
@click.option('--lr', default=1e-4, help='Learning rate')
@click.option('--critic_iters', default=5, help='How many iterations to train the critic/disciminator for')
@click.option('--gen_iters', default=1, help='How many iterations to train the gemerator for')
@click.option('--batch_size', default=64, help='Training batch size. Must be a multiple of number of gpus')
@click.option('--noisy_label_prob', default=0., help='Make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator')
@click.option('--start_iter', default=0, help='Starting iteration')
@click.option('--end_iter', default=100000, help='Ending iteration')
@click.option('--gp_lambda', default=10, help='Gradient penalty lambda hyperparameter')
@click.option('--num_workers', default=5, help='Number of workers to load data')
@click.option('--saving_step', default=200, help='Save model, sample every this saving step')
@click.option('--training_class', default=None, help='A list of classes, separated by comma ",". IGNORE this if you are NOT training on lsun, or if you want to train on other classes of lsun, then change it accordingly')
@click.option('--val_class', default=None, help='A list of classes, separated by comma ",". IGNORE this if you are NOT training on lsun, or if you want to train on other classes of lsun, then change it accordingly')
@click.option('--restore_mode/--no-restore_mode', default=False, help="If True, it will load saved model from OUT_PATH and continue to train")
def train(train_dir, validation_dir, image_data_type, output_path, dim, lr, critic_iters, gen_iters, batch_size, noisy_label_prob, start_iter, end_iter, gp_lambda, num_workers, saving_step, training_class, val_class, restore_mode):
if train_dir is None or len(train_dir) == 0:
raise Exception('Please specify path to data directory in gan.py!')
output_path = Path(output_path)
sample_path = output_path / "samples"
mkdir_path(sample_path)
if isinstance(training_class, str):
training_class = training_class.split(",")
if isinstance(val_class, str):
val_class = val_class.split(",")
data_transform = transforms.Compose([
transforms.Resize(dim),
transforms.RandomCrop(dim),
# transforms.Lambda(lambda x : x + torch.normal(0, 0.1, (3, dim, dim))),
transforms.ToTensor(),
# transforms.Lambda(lambda x : x + torch.randn_like(x)),
# transforms.Lambda(lambda x : x + torch.normal(0, 0.1, (3, dim, dim))),
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5, 0.5, 0.5])
])
cuda_available = torch.cuda.is_available()
device = torch.device("cuda" if cuda_available else "cpu")
fixed_noise = gen_rand_noise(batch_size).to(device)
if restore_mode:
aG = GoodGenerator(dim, dim*dim*3)
aD = GoodDiscriminator(dim)
# aG = torch.load(str(output_path / "generator.pt"))
# aD = torch.load(str(output_path / "discriminator.pt"))
g_state_dict = torch.load(str(output_path / "generator.pt"))
aG.load_state_dict(remove_module_str_in_state_dict(g_state_dict))
d_state_dict = torch.load(str(output_path / "discriminator.pt"))
aD.load_state_dict(remove_module_str_in_state_dict(d_state_dict))
else:
aG = GoodGenerator(dim, dim*dim*3)
aD = GoodDiscriminator(dim)
aG.apply(weights_init)
aD.apply(weights_init)
optimizer_g = torch.optim.Adam(aG.parameters(), lr=lr, betas=(0,0.9))
optimizer_d = torch.optim.Adam(aD.parameters(), lr=lr, betas=(0,0.9))
if torch.__version__ > "1.6":
one = torch.tensor(1, dtype=torch.float)
mone = one * -1
# aG = aG.to(device)
# aD = aD.to(device)
aG = torch.nn.DataParallel(aG).to(device)
aD = torch.nn.DataParallel(aD).to(device)
one = one.to(device)
mone = mone.to(device)
writer = SummaryWriter()
#Reference: https://github.com/caogang/wgan-gp/blob/master/gan_cifar10.py
dataloader = load_data(image_data_type, train_dir, data_transform, batch_size=batch_size, classes=training_class, num_workers=num_workers)
dataiter = iter(dataloader)
for iteration in range(start_iter, end_iter):
start_time = time.time()
print("Iter: " + str(iteration))
start = timer()
#---------------------TRAIN G------------------------
for p in aD.parameters():
p.requires_grad_(False) # freeze D
gen_cost = None
for i in range(gen_iters):
print("Generator iters: " + str(i))
aG.zero_grad()
noise = gen_rand_noise(batch_size).to(device)
noise.requires_grad_(True)
fake_data = aG(noise)
# fake_data = fake_data.view(batch_size, 3, dim, dim)
# fake_data += torch.normal(0, 0.1, (batch_size, 3, dim, dim)).to(device)
gen_cost = aD(fake_data)
gen_cost = gen_cost.mean()
gen_cost.backward(mone)
gen_cost = -gen_cost
optimizer_g.step()
end = timer()
print(f'---train G elapsed time: {end - start}')
#---------------------TRAIN D------------------------
for p in aD.parameters(): # reset requires_grad
p.requires_grad_(True) # they are set to False below in training G
for i in range(critic_iters):
print("Critic iter: " + str(i))
start = timer()
aD.zero_grad()
# gen fake data and load real data
noise = gen_rand_noise(batch_size).to(device)
with torch.no_grad():
noisev = noise # totally freeze G, training D
fake_data = aG(noisev).detach()
# fake_data = fake_data.view(batch_size, 3, dim, dim)
# fake_data += torch.normal(0, 0.1, (batch_size, 3, dim, dim)).to(device)
end = timer(); print(f'---gen G elapsed time: {end-start}')
start = timer()
batch = next(dataiter, None)
if batch is None:
dataiter = iter(dataloader)
batch = dataiter.next()
batch = batch[0] #batch[1] contains labels
real_data = batch.to(device) #TODO: modify load_data for each loading
end = timer(); print(f'---load real imgs elapsed time: {end-start}')
start = timer()
is_flipping = False
if noisy_label_prob > 0 and noisy_label_prob < 1:
is_flipping = np.random.randint(1//noisy_label_prob, size=1)[0] == 1
if not is_flipping:
# train with real data
disc_real = aD(real_data)
disc_real = disc_real.mean()
# train with fake data
disc_fake = aD(fake_data)
disc_fake = disc_fake.mean()
else:
# train with fake data
disc_real = aD(fake_data)
disc_real = disc_real.mean()
# train with real data
disc_fake = aD(real_data)
disc_fake = disc_fake.mean()
#showMemoryUsage(0)
# train with interpolates data
gradient_penalty = calc_gradient_penalty(aD, real_data, fake_data, batch_size, dim, device, gp_lambda)
#showMemoryUsage(0)
# final disc cost
disc_cost = disc_fake - disc_real + gradient_penalty
disc_cost.backward()
w_dist = disc_fake - disc_real
optimizer_d.step()
#------------------VISUALIZATION----------
if i == critic_iters-1:
writer.add_scalar('data/disc_cost', disc_cost, iteration)
#writer.add_scalar('data/disc_fake', disc_fake, iteration)
#writer.add_scalar('data/disc_real', disc_real, iteration)
writer.add_scalar('data/gradient_pen', gradient_penalty, iteration)
end = timer(); print(f'---train D elapsed time: {end-start}')
#---------------VISUALIZATION---------------------
writer.add_scalar('data/gen_cost', gen_cost, iteration)
lib.plot.plot(str(output_path / 'time'), time.time() - start_time)
lib.plot.plot(str(output_path / 'train_disc_cost'), disc_cost.cpu().data.numpy())
lib.plot.plot(str(output_path / 'train_gen_cost'), gen_cost.cpu().data.numpy())
lib.plot.plot(str(output_path / 'wasserstein_distance'), w_dist.cpu().data.numpy())
if iteration > 0 and iteration % saving_step == 0:
val_loader = load_data(image_data_type, validation_dir, data_transform, batch_size=batch_size, classes=val_class, num_workers=num_workers)
dev_disc_costs = []
for _, images in enumerate(val_loader):
imgs = torch.Tensor(images[0])
imgs = imgs.to(device)
with torch.no_grad():
imgs_v = imgs
D = aD(imgs_v)
_dev_disc_cost = -D.mean().cpu().data.numpy()
dev_disc_costs.append(_dev_disc_cost)
lib.plot.plot(str(output_path / 'dev_disc_cost.png'), np.mean(dev_disc_costs))
lib.plot.flush()
gen_images = generate_image(aG, dim=dim, batch_size=batch_size, noise=fixed_noise)
torchvision.utils.save_image(gen_images, str(sample_path / 'samples_{}.png').format(iteration), nrow=8, padding=2)
grid_images = torchvision.utils.make_grid(gen_images, nrow=8, padding=2)
writer.add_image('images', grid_images, iteration)
#----------------------Save model----------------------
# torch.save(aG, str(output_path / "generator.pt"))
# torch.save(aD, str(output_path / "discriminator.pt"))
torch.save(aG.state_dict(), str(output_path / "generator.pt"))
torch.save(aD.state_dict(), str(output_path / "discriminator.pt"))
lib.plot.tick()
if __name__ == '__main__':
train()