-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJoin_retrain.py
63 lines (50 loc) · 2.52 KB
/
Join_retrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from torch import Tensor, zeros, full, cat, no_grad
from torch.utils.data import DataLoader
from Generator import Generator
from Utils import ExperienceDataset
class Join_retrain:
def __init__(self, generator: Generator, batch_size: int, buff_img: int, channels: int,
img_size: int, device: str = "cpu"):
"""
Manage the join retraining in an online setting
"""
self.g = generator
self.img_size = img_size
self.batch_size = batch_size
self.buff_img = buff_img
self.device = device
self.channels = channels
def create_buffer(self, id_exp: int, past_classes: Tensor,
source: tuple[Tensor, Tensor]) -> DataLoader:
real_image, real_label = source
device = self.device
if id_exp == 0: # No previous experience (first experience)
return DataLoader(ExperienceDataset(real_image, real_label, device),
shuffle=True,
batch_size=self.batch_size)
elif id_exp > 0: # generating buffer replay
# Define the number of images to generate, we allocate a fixed number of slots for each number of class
# encountered
img_to_create = self.buff_img * past_classes.size(0)
gen_buffer = zeros((img_to_create, self.channels, self.img_size, self.img_size), device=self.device)
self.g.eval()
with no_grad():
count = 0
for i in past_classes: # for each class encountered
# since the buffer may have high dimension, we generate image in batch fashion
to_generate = self.buff_img
while to_generate > 0:
batch_size = min(256, to_generate)
gen_label = full((batch_size,), i, device=device)
gen_buffer[count:count + batch_size] = self.g(gen_label)
count += batch_size
to_generate -= batch_size
self.g.train()
# In the end, we concat the replay generated and the current batch of image (new classes)
custom_x = cat((real_image, gen_buffer.cpu()), dim=0)
custom_y = cat(
(real_label, past_classes.repeat_interleave(self.buff_img)),
dim=0)
return DataLoader(ExperienceDataset(custom_x, custom_y, device),
shuffle=True,
batch_size=self.batch_size)