-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiscriminator.py
44 lines (33 loc) · 1.52 KB
/
Discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from torch import Tensor
from torch.nn import Module, Sequential, LeakyReLU, Conv2d, BatchNorm2d, Linear, Sigmoid, Softmax, Dropout2d
class Discriminator(Module):
def __init__(self, channels: int, classes: int = 10):
super(Discriminator, self).__init__()
self.conv_blocks = Sequential(
Conv2d(channels, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
LeakyReLU(negative_slope=0.2, inplace=True),
Dropout2d(p=0.25, inplace=False),
Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
LeakyReLU(negative_slope=0.2, inplace=True),
Dropout2d(p=0.25, inplace=False),
BatchNorm2d(32, eps=0.8),
Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
LeakyReLU(negative_slope=0.2, inplace=True),
Dropout2d(p=0.25, inplace=False),
BatchNorm2d(64, eps=0.8),
Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
LeakyReLU(negative_slope=0.2, inplace=True),
Dropout2d(p=0.25, inplace=False),
BatchNorm2d(128, eps=0.8)
)
# Output layers
self.discr = Sequential(
Linear(512, 1),
Sigmoid())
self.classifier = Sequential(
Linear(512, classes),
Softmax(dim=1))
def forward(self, x: Tensor) -> tuple[Tensor, Tensor]:
x = self.conv_blocks(x)
x = x.view(x.shape[0], -1)
return self.discr(x), self.classifier(x)