-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_results.py
31 lines (26 loc) · 1.02 KB
/
read_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import pandas as pd
df = pd.read_csv("runs/detect/train2/results.csv")
def print_final_epoch():
final_result = df.iloc[-1]
print("\nFinal Epoch:")
print(f"Precision: {final_result['metrics/precision(B)']:.4f}")
print(f"Recall: {final_result['metrics/recall(B)']:.4f}")
print(f"mAP@50: {final_result['metrics/mAP50(B)']:.4f}")
print(f"mAP@50-95: {final_result['metrics/mAP50-95(B)']:.4f}")
def print_best_epoch():
best_epoch = df["metrics/mAP50-95(B)"].idxmax() # best epoch
best_result = df.iloc[best_epoch]
print("\nBest Epoch:")
print(f"Epoch: {best_epoch}")
print(f"Precision: {best_result['metrics/precision(B)']:.4f}")
print(f"Recall: {best_result['metrics/recall(B)']:.4f}")
print(f"mAP@50: {best_result['metrics/mAP50(B)']:.4f}")
print(f"mAP@50-95: {best_result['metrics/mAP50-95(B)']:.4f}")
def print_summary():
print_final_epoch()
print_best_epoch()
#choose
if __name__ == "__main__":
print_summary()
# print_final_epoch()
# print_best_epoch()