Skip to content

j-sripad/Tiramisu-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository contains the implementation of "The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation" in pytorch.

Paper

Note

  • The decoder part of this implementation is bit different from that of the paper.

Architecture

Alt text

Usage


from tiramisu import Tiramisu_Segmentation 
net = Tiramisu_Segmentation(layer_tiramisu=103,nclasses=1,input_features=1,growth_rate=16)
""" Arguments : layer_tiramisu - 57, 47 or 103 input_features - input image channels nclasses - number of classes growth_rate - growth rate (filters to begin with for convolution - generally 16) """

Dataset

Examples

  • Example 1

  • Example 2