-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate_with_entire_kb.py
64 lines (52 loc) · 2.32 KB
/
evaluate_with_entire_kb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from allennlp.data import (
DataLoader,
DatasetReader,
Instance,
Vocabulary,
TextFieldTensors,
)
from dataset_reader import EntitiesInKBLoader
from parameteres import Biencoder_params
from utils import build_vocab, build_data_loaders, build_one_flag_loader, emb_returner, build_trainer
from encoder import Pooler_for_mention, Pooler_for_cano_and_def
from allennlp.predictors import Predictor
from allennlp.common.util import JsonDict
from tqdm import tqdm
from kb_loader import KBIndexerWithFaiss
from model import BiencoderNNSearchEvaluator
from allennlp.training.util import evaluate
from utils import candidate_recall_evaluator
class KBEntityEmbEncoder(Predictor):
def predict(self, entitiy_unique_id: int) -> JsonDict:
return self.predict_json({"entity_unique_id": entitiy_unique_id})
def _json_to_instance(self, json_dict: JsonDict) -> Instance:
entity_unique_id = json_dict["entity_unique_id"]
return self._dataset_reader.text_to_instance(entity_unique_id=entity_unique_id)
def evaluate_with_kb(params, mention_encoder, model, dev_loader, test_loader):
ds = EntitiesInKBLoader(params)
entities = ds._read()
entity_ids = ds.get_entity_ids()
vocab = build_vocab(entities)
entity_loader = build_one_flag_loader(params, entities)
entity_loader.index_with(vocab)
predictor = KBEntityEmbEncoder(model, ds)
entity_idx2emb = {}
print('===Encoding All Entities from Fine-Tuned Entity Encoder===')
for entity_id in tqdm(entity_ids):
its_emb = predictor.predict(entity_id)['encoded_entities']
entity_idx2emb.update({entity_id: its_emb})
if params.debug and len(entity_idx2emb) == 300:
break
kb = KBIndexerWithFaiss(
config=params, entity_idx2emb=entity_idx2emb
)
evaluate_model = BiencoderNNSearchEvaluator(params, mention_encoder, vocab, kb)
# add mention and its candidate
candidate_recall_evaluator('dev', evaluate_model, params, dev_loader)
candidate_recall_evaluator('test', evaluate_model, params, test_loader)
if __name__ == '__main__':
config = Biencoder_params()
params = config.opts
_, __, embedder = emb_returner(config=params)
mention_encoder, entity_encoder = Pooler_for_mention(params, embedder), Pooler_for_cano_and_def(params, embedder)
evaluate_with_kb(params, entity_encoder)