-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
48 lines (43 loc) · 1.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
'''
Model classes
'''
import torch
import pdb
import torch.nn as nn
from allennlp.modules.seq2vec_encoders import Seq2VecEncoder, PytorchSeq2VecWrapper
from allennlp.models import Model
from overrides import overrides
from allennlp.training.metrics import CategoricalAccuracy, BooleanAccuracy
from torch.nn.functional import softmax
class TitleAndCaptionClassifier(Model):
def __init__(self, args,
mention_encoder: Seq2VecEncoder,
num_label: int,
vocab):
super().__init__(vocab)
self.args = args
self.mention_encoder = mention_encoder
self.accuracy = BooleanAccuracy()
self.BCEWloss = nn.BCEWithLogitsLoss()
self.accuracy = CategoricalAccuracy()
self.loss = nn.CrossEntropyLoss()
self.linear_for_classify = nn.Linear(self.mention_encoder.get_output_dim(), num_label)
def forward(self, context,
mention_uniq_id: torch.Tensor = None,
label: torch.Tensor = None):
emb = self.mention_encoder(context)
scores = self.linear_for_classify(emb)
probs = softmax(scores, dim=1)
output = {}
if label is not None:
loss = self.loss(scores, label)
self.accuracy(probs, label)
output['loss'] = loss
output['logits'] = scores
output['probs'] = probs
output['mention_uniq_id'] = mention_uniq_id
output['encoded_embeddings'] = emb
return output
@overrides
def get_metrics(self, reset: bool = False):
return {"accuracy": self.accuracy.get_metric(reset)}