-
-
Notifications
You must be signed in to change notification settings - Fork 137
/
Copy pathmain.py
475 lines (405 loc) · 19.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import streamlit as st
import json
import asyncio
from app.streamlit_web_scraper_chat import StreamlitWebScraperChat
from app.ui_components import display_info_icons, display_message, extract_data_from_markdown, format_data
from app.utils import loading_animation, get_loading_message
from datetime import datetime, timedelta
from src.ollama_models import OllamaModel
import pandas as pd
import base64
from google_auth_oauthlib.flow import Flow
import io
from io import BytesIO
import re
from src.utils.google_sheets_utils import SCOPES, get_redirect_uri, display_google_sheets_button, initiate_google_auth
from src.scrapers.playwright_scraper import ScraperConfig
import time
from urllib.parse import urlparse
import atexit
import os
def handle_oauth_callback():
if 'code' in st.query_params:
try:
flow = Flow.from_client_secrets_file(
'client_secret.json',
scopes=SCOPES,
redirect_uri=get_redirect_uri()
)
flow.fetch_token(code=st.query_params['code'])
st.session_state['google_auth_token'] = flow.credentials.to_json()
st.success("Successfully authenticated with Google!")
st.query_params.clear()
except Exception as e:
st.error(f"Error during OAuth callback: {str(e)}")
def serialize_bytesio(obj):
if isinstance(obj, BytesIO):
return {
"_type": "BytesIO",
"data": base64.b64encode(obj.getvalue()).decode('utf-8')
}
raise TypeError(f"Object of type {obj.__class__.__name__} is not JSON serializable")
def deserialize_bytesio(obj):
if isinstance(obj, dict) and "_type" in obj and obj["_type"] == "BytesIO":
return BytesIO(base64.b64decode(obj["data"]))
return obj
def save_chat_history(chat_history):
with open("chat_history.json", "w") as f:
json.dump(chat_history, f, default=serialize_bytesio)
def load_chat_history():
try:
with open("chat_history.json", "r") as f:
return json.load(f, object_hook=deserialize_bytesio)
except FileNotFoundError:
return {}
def safe_process_message(web_scraper_chat, message):
if message is None or message.strip() == "":
return "I'm sorry, but I didn't receive any input. Could you please try again?"
try:
progress_placeholder = st.empty()
progress_placeholder.text("Initializing scraper...")
start_time = time.time()
response = web_scraper_chat.process_message(message)
end_time = time.time()
progress_placeholder.text(f"Scraping completed in {end_time - start_time:.2f} seconds.")
st.write("Debug: Response type:", type(response))
if isinstance(response, str):
if "Error:" in response:
st.error(response)
else:
st.write("Debug: Response content:", response[:500] + "..." if len(response) > 500 else response)
if isinstance(response, tuple):
st.write("Debug: Response is a tuple")
if len(response) == 2 and isinstance(response[1], pd.DataFrame):
st.write("Debug: CSV data detected")
csv_string, df = response
st.text("CSV Data:")
st.code(csv_string, language="csv")
st.text("Interactive Table:")
st.dataframe(df)
csv_buffer = BytesIO()
df.to_csv(csv_buffer, index=False)
csv_buffer.seek(0)
st.download_button(
label="Download CSV",
data=csv_buffer,
file_name="data.csv",
mime="text/csv"
)
return csv_string
elif len(response) == 2 and isinstance(response[0], BytesIO):
st.write("Debug: Excel data detected")
excel_buffer, df = response
st.text("Excel Data:")
st.dataframe(df)
excel_buffer.seek(0)
st.download_button(
label="Download Original Excel file",
data=excel_buffer,
file_name="data_original.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
excel_data = BytesIO()
with pd.ExcelWriter(excel_data, engine='xlsxwriter') as writer:
df.to_excel(writer, index=False, sheet_name='Sheet1')
excel_data.seek(0)
st.download_button(
label="Download Excel (from DataFrame)",
data=excel_data,
file_name="data_from_df.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
return ("Excel data displayed and available for download.", excel_buffer)
elif isinstance(response, pd.DataFrame):
st.write("Debug: Response is a DataFrame")
st.text("Data:")
st.dataframe(response)
csv_buffer = BytesIO()
response.to_csv(csv_buffer, index=False)
csv_buffer.seek(0)
st.download_button(
label="Download CSV",
data=csv_buffer,
file_name="data.csv",
mime="text/csv"
)
return "DataFrame displayed and available for download as CSV."
else:
st.write("Debug: Response is not a tuple or DataFrame")
return response
except Exception as e:
st.error(f"An error occurred during scraping: {str(e)}")
return f"An unexpected error occurred: {str(e)}. Please try again or contact support if the issue persists."
def get_date_group(date_str):
date = datetime.strptime(date_str, "%Y-%m-%d")
today = datetime.now().date()
if date.date() == today:
return "Today"
elif date.date() == today - timedelta(days=1):
return "Yesterday"
elif date.date() > today - timedelta(days=7):
return date.strftime("%A")
else:
return date.strftime("%B %d, %Y")
def get_last_url_from_chat(messages):
for message in reversed(messages):
if message['role'] == 'user' and message['content'].lower().startswith('http'):
return message['content']
return None
def initialize_web_scraper_chat(url=None):
if st.session_state.selected_model.startswith("ollama:"):
model = st.session_state.selected_model
else:
model = st.session_state.selected_model
scraper_config = ScraperConfig(
use_current_browser=st.session_state.use_current_browser,
headless=not st.session_state.use_current_browser,
max_retries=3,
delay_after_load=5,
debug=True,
wait_for='domcontentloaded'
)
web_scraper_chat = StreamlitWebScraperChat(model_name=model, scraper_config=scraper_config)
if url:
web_scraper_chat.process_message(url)
website_name = get_website_name(url)
st.session_state.chat_history[st.session_state.current_chat_id]["name"] = website_name
return web_scraper_chat
async def list_ollama_models():
try:
return await OllamaModel.list_models()
except Exception as e:
st.error(f"Error fetching Ollama models: {str(e)}")
return []
def load_css():
with open("app/styles.css", "r") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
def get_image_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode()
def get_website_name(url: str) -> str:
parsed_url = urlparse(url)
domain = parsed_url.netloc
if domain.startswith('www.'):
domain = domain[4:]
return domain.split('.')[0].capitalize()
def render_message(role, content, avatar_path):
message_class = "user-message" if role == "user" else "assistant-message"
avatar_base64 = get_image_base64(avatar_path)
return f"""
<div class="chat-message {message_class}">
<div class="avatar">
<img src="data:image/png;base64,{avatar_base64}" alt="{role} avatar">
</div>
<div class="message-content">{content}</div>
</div>
"""
def display_message_with_sheets_upload(message, message_index):
content = message["content"]
if isinstance(content, (str, bytes, BytesIO)):
data = extract_data_from_markdown(content)
if data is not None:
try:
is_excel = isinstance(data, BytesIO) or (isinstance(content, str) and 'excel' in content.lower())
if is_excel:
df = format_data(data, 'excel')
else:
df = format_data(data, 'csv')
if df is not None:
st.dataframe(df)
if not is_excel:
csv_buffer = BytesIO()
df.to_csv(csv_buffer, index=False)
csv_buffer.seek(0)
st.download_button(
label="📥 Download as CSV",
data=csv_buffer,
file_name="data.csv",
mime="text/csv",
key=f"csv_download_{message_index}"
)
else:
excel_buffer = BytesIO()
with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer:
df.to_excel(writer, index=False, sheet_name='Sheet1')
excel_buffer.seek(0)
st.download_button(
label="📥 Download as Excel",
data=excel_buffer,
file_name="data.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
key=f"excel_download_{message_index}"
)
display_google_sheets_button(df, f"sheets_upload_{message_index}")
else:
st.warning("Failed to display data as a table. Showing raw content:")
st.code(content)
except Exception as e:
st.error(f"Error processing data: {str(e)}")
st.code(content)
else:
st.markdown(content)
else:
st.markdown(str(content))
def cleanup():
if 'web_scraper_chat' in st.session_state and st.session_state.web_scraper_chat:
del st.session_state.web_scraper_chat
atexit.register(cleanup)
def main():
st.set_page_config(
page_title="CyberScraper 2077",
page_icon="app/icons/radiation.png",
layout="wide"
)
load_css()
handle_oauth_callback()
# avatar paths
user_avatar_path = "app/icons/man.png"
ai_avatar_path = "app/icons/skull.png"
if 'chat_history' not in st.session_state:
st.session_state.chat_history = load_chat_history()
if 'current_chat_id' not in st.session_state or st.session_state.current_chat_id not in st.session_state.chat_history:
if st.session_state.chat_history:
st.session_state.current_chat_id = next(iter(st.session_state.chat_history))
else:
new_chat_id = str(datetime.now().timestamp())
st.session_state.chat_history[new_chat_id] = {
"messages": [],
"date": datetime.now().strftime("%Y-%m-%d")
}
st.session_state.current_chat_id = new_chat_id
save_chat_history(st.session_state.chat_history)
if 'selected_model' not in st.session_state:
st.session_state.selected_model = "gpt-4o-mini"
if 'web_scraper_chat' not in st.session_state:
st.session_state.web_scraper_chat = None
with st.sidebar:
st.title("Conversation History")
# Model selection
st.subheader("Select Model")
default_models = ["gpt-4o-mini", "gpt-3.5-turbo", "gemini-1.5-flash", "gemini-pro"]
ollama_models = st.session_state.get('ollama_models', [])
all_models = default_models + [f"ollama:{model}" for model in ollama_models]
selected_model = st.selectbox("Choose a model", all_models, index=all_models.index(st.session_state.selected_model) if st.session_state.selected_model in all_models else 0)
if selected_model != st.session_state.selected_model:
st.session_state.selected_model = selected_model
st.session_state.web_scraper_chat = None
st.rerun()
# Display warnings for missing API keys
if not os.getenv("OPENAI_API_KEY") and any(model.startswith(("gpt-", "text-")) for model in all_models):
st.warning("OpenAI API Key is not set. Some models may not be available.")
if not os.getenv("GOOGLE_API_KEY") and any(model.startswith("gemini-") for model in all_models):
st.warning("Google API Key is not set. Gemini models may not be available.")
st.session_state.use_current_browser = st.checkbox("Use Current Browser (No Docker)", value=False, help="Works Natively, Doesn't Work with Docker. if a website is blocking your browser, you can use this option to use the current browser instead of opening a new one.")
if st.button("Refresh Ollama Models"):
with st.spinner("Fetching Ollama models..."):
st.session_state.ollama_models = asyncio.run(list_ollama_models())
st.success(f"Found {len(st.session_state.ollama_models)} Ollama models")
st.rerun()
if st.button("+ 🗨️ New Chat", key="new_chat", use_container_width=True):
new_chat_id = str(datetime.now().timestamp())
st.session_state.chat_history[new_chat_id] = {
"messages": [],
"date": datetime.now().strftime("%Y-%m-%d"),
"name": "🗨️ New Chat"
}
st.session_state.current_chat_id = new_chat_id
st.session_state.web_scraper_chat = None
save_chat_history(st.session_state.chat_history)
st.rerun()
grouped_chats = {}
for chat_id, chat_data in st.session_state.chat_history.items():
date_group = get_date_group(chat_data['date'])
if date_group not in grouped_chats:
grouped_chats[date_group] = []
grouped_chats[date_group].append((chat_id, chat_data))
for date_group, chats in grouped_chats.items():
st.markdown(f"<div class='date-group'>{date_group}</div>", unsafe_allow_html=True)
for chat_id, chat_data in chats:
button_label = chat_data.get('name', "🗨️ Unnamed Chat")
col1, col2 = st.columns([0.85, 0.15])
with col1:
if st.button(button_label, key=f"history_{chat_id}", use_container_width=True):
st.session_state.current_chat_id = chat_id
messages = chat_data['messages']
last_url = get_last_url_from_chat(messages)
if last_url and not st.session_state.web_scraper_chat:
st.session_state.web_scraper_chat = initialize_web_scraper_chat(last_url)
st.rerun()
with col2:
if st.button("🗑️", key=f"delete_{chat_id}"):
del st.session_state.chat_history[chat_id]
save_chat_history(st.session_state.chat_history)
if st.session_state.current_chat_id == chat_id:
if st.session_state.chat_history:
st.session_state.current_chat_id = next(iter(st.session_state.chat_history))
else:
st.session_state.current_chat_id = None
st.session_state.web_scraper_chat = None
st.rerun()
st.markdown(
"""
<h1 style="text-align: center; font-size: 30px; color: #333;">CyberScraper 2077</h1>
""",
unsafe_allow_html=True
)
display_info_icons()
if st.session_state.current_chat_id not in st.session_state.chat_history:
if st.session_state.chat_history:
st.session_state.current_chat_id = next(iter(st.session_state.chat_history))
else:
new_chat_id = str(datetime.now().timestamp())
st.session_state.chat_history[new_chat_id] = {
"messages": [],
"date": datetime.now().strftime("%Y-%m-%d")
}
st.session_state.current_chat_id = new_chat_id
save_chat_history(st.session_state.chat_history)
chat_container = st.container()
with chat_container:
st.markdown('<div class="chat-container">', unsafe_allow_html=True)
for index, message in enumerate(st.session_state.chat_history[st.session_state.current_chat_id]["messages"]):
if message["role"] == "user":
st.markdown(render_message("user", message["content"], user_avatar_path), unsafe_allow_html=True)
else:
with st.container():
st.markdown(render_message("assistant", "", ai_avatar_path), unsafe_allow_html=True)
display_message_with_sheets_upload(message, index)
st.markdown('</div>', unsafe_allow_html=True)
prompt = st.chat_input("Enter the URL to scrape or ask a question regarding the data", key="user_input")
if prompt:
st.session_state.chat_history[st.session_state.current_chat_id]["messages"].append({"role": "user", "content": prompt})
if not st.session_state.web_scraper_chat:
st.session_state.web_scraper_chat = initialize_web_scraper_chat()
if prompt.lower().startswith("http"):
website_name = get_website_name(prompt)
st.session_state.chat_history[st.session_state.current_chat_id]["name"] = website_name
st.info(f"Scraping {website_name}... This may take a moment.")
with st.chat_message("assistant"):
try:
full_response = loading_animation(
safe_process_message,
st.session_state.web_scraper_chat,
prompt
)
if isinstance(full_response, str) and not full_response.startswith("Error:"):
st.success("Scraping completed successfully!")
st.write("Debug: Full response type:", type(full_response))
if full_response is not None:
if isinstance(full_response, tuple) and len(full_response) == 2 and isinstance(full_response[1], BytesIO):
st.session_state.chat_history[st.session_state.current_chat_id]["messages"].append({"role": "assistant", "content": full_response[0]})
else:
st.session_state.chat_history[st.session_state.current_chat_id]["messages"].append({"role": "assistant", "content": full_response})
save_chat_history(st.session_state.chat_history)
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
save_chat_history(st.session_state.chat_history)
st.rerun()
st.markdown(
"""
<p style="text-align: center; font-size: 12px; color: #666666;">CyberScraper 2077 can make mistakes sometimes. Report any issues to the developers.</p>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
main()