Skip to content
This repository has been archived by the owner on Jul 29, 2024. It is now read-only.
Yixing Lao edited this page Nov 28, 2018 · 9 revisions

KNN interpolation parameters

r = infinity, k = 10

knn match time:  44.59255909919739
Confusion matrix:
                  0       1       2       3       4       5       6       7       8 
          0       0   14477      74    1838     996    9113      70   52799     152 
          1       0 13152560    7151     769   33660  456277    6905    1746    4005 
          2       0   21121    3057     773    5048     970    1630     116     241 
          3       0    2980     299  216526   30403   24112     984     930      83 
          4       0    7600   10832  199479  898949   86461  106719     392   15620 
          5       0  411419     890   22573    2729 8272524   22027   12763   11016 
          6       0  136155    1314   15429  157891 2738526  335954  105994    8474 
          7       0   13729       0     370     279     236     242   71558      68 
          8       0   17830       0       0     835   29199    1435   23360  184693 
IoU per class:
[0.9214407800190936,
 0.05720220051644774,
 0.41985999883655545,
 0.5773978625432511,
 0.6841477169256786,
 0.09230319486965746,
 0.30872842270572043,
 0.6221573204787458]
mIoU (ignoring label 0):
0.46040468711189375
Overall accuracy
0.8293030194735018

r = infinity, k = 100
Confusion matrix:
                  0       1       2       3       4       5       6       7       8 
          0       0   14882      74    1815     984    9073      94   52478     119 
          1       0 13166522    7464     856   36445  439396    6710    1490    4190 
          2       0   20971    2983     822    5186     985    1670     116     223 
          3       0    2866      31  215306   31065   25354     970     611     114 
          4       0    6758    9212  202284  916373   82060   96743      75   12547 
          5       0  393901     644   21655    1423 8296483   22662    8628   10545 
          6       0   84200    1235   15695  160148 2774004  345031  110813    8611 
          7       0   14662      23     363     337     179     276   70578      64 
          8       0   17951       0       0     745   21105     390   16467  200694 
IoU per class:
[0.9269338152127984,
 0.05784931639678076,
 0.4156550680319387,
 0.5868915160167055,
 0.6857150626364573,
 0.09507191475267816,
 0.3141239618661041,
 0.6834555893831348]
mIoU (ignoring label 0):
0.4707120305370748
Overall accuracy
0.8321042687427123

r = 100, k = 100
knn match time:  57.63151741027832
Confusion matrix:
                  0       1       2       3       4       5       6       7       8 
          0       0   14882      74    1815     984    9075      92   52478     119 
          1       0 13166203    7464     854   36434  439739    6706    1498    4175 
          2       0   20958    3000     822    5181     985    1669     116     225 
          3       0    2865      29  215332   31045   25357     967     609     113 
          4       0    6760    9219  202259  916578   82093   96413      72   12658 
          5       0  394261     645   21689    1409 8295959   22686    8733   10559 
          6       0   83435    1240   15693  160055 2775520  344372  110791    8631 
          7       0   14666      23     363     337     180     274   70575      64 
          8       0   17957       0       0     743   21076     351   16264  200961 
IoU per class:
[0.9269379170267478,
 0.05816658911121452,
 0.41570124923503415,
 0.5870773274850505,
 0.6855659636963922,
 0.09489961290265689,
 0.31427426357624744,
 0.6840596779189657]
mIoU (ignoring label 0):
0.4708353251190387
Overall accuracy
0.8320687822134346

r = 0.1, k = 100
knn match time:  49.399659633636475
Confusion matrix:
                  0       1       2       3       4       5       6       7       8 
          0       0   14861      73    1814     985    9095      94   52478     119 
          1       0 13129169    7304     798   35057  478075    6929    1624    4117 
          2       0   20960    3078     768    5170     992    1615     125     248 
          3       0    2898      72  215055   30898   25309     977     987     121 
          4       0    7287    9830  200592  909468   83278  102616      82   12899 
          5       0  391447     812   22236    2311 8291716   22830   13299   11290 
          6       0  100604    1247   15249  159068 2753117  352754  109412    8286 
          7       0   12925      13     369     300     225     261   72322      67 
          8       0   17822       0       0     794   21755     777   17983  198221 
IoU per class:
[0.9234827477158357,
 0.058927135582187845,
 0.41650769180115776,
 0.5831231366011606,
 0.684208823856568,
 0.09702393624190055,
 0.3144516813482091,
 0.6733507711121679]
mIoU (ignoring label 0):
0.46888449053239845
Overall accuracy
0.8305920766107568

r = 0.1, k = 20
knn match time:  59.716012954711914
Confusion matrix:
                  0       1       2       3       4       5       6       7       8 
          0       0   14509      75    1825     995    9092      88   52785     150 
          1       0 13139264    7186     793   34435  468846    6857    1678    4014 
          2       0   20948    3051     784    5177     984    1642     123     247 
          3       0    2963     114  215540   30742   24887     993     965     113 
          4       0    7438   10099  200040  904850   85840  103490     179   14116 
          5       0  401101     831   22492    2378 8282403   22505   12933   11298 
          6       0  110376    1297   15284  156764 2753573  345390  108534    8519 
          7       0   13072       1     377     304     190     221   72250      67 
          8       0   18108       0       0     789   23866    1332   20171  193086 
IoU per class:
[0.9228904327917264,
 0.05813200213398369,
 0.41764276178241266,
 0.5812836742704323,
 0.6836978842965737,
 0.09497145411995292,
 0.3126825784952286,
 0.6529219615454847]
mIoU (ignoring label 0):
0.4655278436794744
Overall accuracy
0.8300203850395962

r = 0.2, k = 10
knn match time:  47.98038911819458
Confusion matrix:
                  0       1       2       3       4       5       6       7       8 
          0       0   14480      74    1838     996    9114      70   52799     148 
          1       0 13144073    7128     772   33620  464771    6950    1839    3920 
          2       0   21123    3065     782    5041     962    1633     109     241 
          3       0    3016     301  216849   30210   23994     972     893      82 
          4       0    7604   10824  199230  898284   87374  106300     369   16067 
          5       0  413118     881   22781    2707 8270039   22287   12860   11268 
          6       0  130877    1324   15421  154497 2744654  337610  106725    8629 
          7       0   13592       0     370     279     220     241   71712      68 
          8       0   17935       0       0     824   28728    1444   22900  185521 
IoU per class:
[0.9210765014816047,
 0.057381959785823944,
 0.4205164901012851,
 0.5783328933899036,
 0.6830992139522728,
 0.0927611109462562,
 0.30886780344306286,
 0.6233339045180712]
mIoU (ignoring label 0):
0.46067123470228505
Overall accuracy
0.8289923151949375

r = 0.1, k = 10
knn match time:  46.46926927566528
Confusion matrix:
                  0       1       2       3       4       5       6       7       8 
          0       0   14479      74    1839     995    9113      70   52799     150 
          1       0 13144262    7132     768   33640  464577    6930    1837    3927 
          2       0   21123    3051     790    5037     965    1640     110     240 
          3       0    3017     305  216831   30226   23990     973     893      82 
          4       0    7612   10859  199210  898252   87390  106303     358   16068 
          5       0  413004     907   22801    2726 8270006   22277   12880   11340 
          6       0  131017    1330   15411  154632 2744521  337516  106714    8596 
          7       0   13582       0     370     285     220     241   71716      68 
          8       0   17930       0       0     826   28731    1447   22906  185512 
IoU per class:
[0.9210884548236281,
 0.057039765185365215,
 0.4204864767378948,
 0.5782400683908578,
 0.6831139234128247,
 0.09273569135508036,
 0.30888104057197,
 0.6232073449725034]
mIoU (ignoring label 0):
0.46059909568126556
Overall accuracy
0.8289920642800841

Results

  • with python predict.py --ckpt logs/semantic/best_model_epoch_290.ckpt --set=test --n=1000
  • with 0.1 voxel size interpolation
Processing sg27_station4_intensity_rgb
Processing sg27_station5_intensity_rgb
Processing sg27_station9_intensity_rgb
Processing sg28_station4_intensity_rgb
Processing untermaederbrunnen_station1_xyz_intensity_rgb
Processing untermaederbrunnen_station3_xyz_intensity_rgb
Confusion matrix:
                  0       1       2       3       4       5       6       7       8 
          0  495085    1278    1138     430    1751    2415    2266      13      57 
          1 14688505 499853852 1424380   69629  133094 4642140 1440000  101662  217503 
          2 4633497 53136682 63102603  155514  781999  342622  583525    1025    3658 
          3 4885899    6180  200999 91055662  372718  312404 1013208    5738    6746 
          4 5842146 1041821 3440385 22016860 6395483 50497774 7355221  323567  158837 
          5 9969119 2000776   34492  307341  697438 124783086 1151075  108788  137887 
          6 3774938 11176530  861974  619391  635722 10724816 14632771 1581235  342359 
          7  156577  234451   47293   13167    2066  314218  219827 1496877   39241 
          8  636100  969530   12449   14746   58887  151604  248975   51796 7978005 
IoU per class:
[Warn] Contains prediction of label 0: [  495085. 14688505.  4633497.  4885899.  5842146.  9969119.  3774938.
   156577.   636100.]
[0.8671270479918032,
 0.5083606408141168,
 0.7838118662736036,
 0.06810089995863355,
 0.6359784757546797,
 0.2782602969283313,
 0.32963954026370246,
 0.7676899350600925]
mIoU (ignoring label 0):
[Warn] Contains prediction of label 0: [  495085. 14688505.  4633497.  4885899.  5842146.  9969119.  3774938.
   156577.   636100.]
0.5298710878806203
Overall accuracy
0.815954648976134

Dataset statistics

name set # points raw # points npz
bildstein_station1_xyz_intensity_rgb train 29,697,591 1,067,441
bildstein_station3_xyz_intensity_rgb train 23,995,481 1,266,791
bildstein_station5_xyz_intensity_rgb train 24,919,498 1,483,879
domfountain_station1_xyz_intensity_rgb train 44,990,641 842,532
domfountain_station2_xyz_intensity_rgb train 41,268,288 841,896
domfountain_station3_xyz_intensity_rgb train 35,207,289 1,066,277
neugasse_station1_xyz_intensity_rgb train 50,122,464 1,660,690
sg27_station1_intensity_rgb train 322,088,562 4,628,578
sg27_station2_intensity_rgb train 496,702,861 2,929,917
sg27_station4_intensity_rgb valid 280,994,776 3,193,565
sg27_station5_intensity_rgb valid 218,272,134 3,747,586
sg27_station9_intensity_rgb train 222,908,912 3,275,825
sg28_station4_intensity_rgb valid 258,720,948 2,514,756
untermaederbrunnen_station1_xyz_intensity_rgb valid 27,977,429 1,009,747
untermaederbrunnen_station3_xyz_intensity_rgb valid 28,059,319 770,059
birdfountain_station1_xyz_intensity_rgb test 40,133,912
castleblatten_station1_intensity_rgb test 31,806,225
castleblatten_station5_xyz_intensity_rgb test 49,152,311
marketplacefeldkirch_station1_intensity_rgb test 26,884,140
marketplacefeldkirch_station4_intensity_rgb test 23,137,668
marketplacefeldkirch_station7_intensity_rgb test 23,419,114
sg27_station10_intensity_rgb test 285,579,196
sg27_station3_intensity_rgb test 422,445,052
sg27_station6_intensity_rgb test 226,790,878
sg27_station8_intensity_rgb test 429,615,314
sg28_station2_intensity_rgb test 170,158,281
sg28_station5_xyz_intensity_rgb test 267,520,082
stgallencathedral_station1_intensity_rgb test 31,179,769
stgallencathedral_station3_intensity_rgb test 31,643,853
stgallencathedral_station6_intensity_rgb test 32,486,227
Clone this wiki locally