This repository has been archived by the owner on Jul 29, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 112
/
interpolate.py
127 lines (107 loc) · 4.47 KB
/
interpolate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import os
import numpy as np
import open3d
import time
import multiprocessing
import tensorflow as tf
from util.metric import ConfusionMatrix
from util.point_cloud_util import load_labels, write_labels
from dataset.semantic_dataset import map_name_to_file_prefixes
from pprint import pprint
from tf_ops.tf_interpolate import interpolate_label_with_color
class Interpolator:
def __init__(self):
pl_sparse_points = tf.placeholder(tf.float32, (None, 3))
pl_sparse_labels = tf.placeholder(tf.int32, (None,))
pl_dense_points = tf.placeholder(tf.float32, (None, 3))
pl_knn = tf.placeholder(tf.int32, ())
dense_labels, dense_colors = interpolate_label_with_color(
pl_sparse_points, pl_sparse_labels, pl_dense_points, pl_knn
)
self.ops = {
"pl_sparse_points": pl_sparse_points,
"pl_sparse_labels": pl_sparse_labels,
"pl_dense_points": pl_dense_points,
"pl_knn": pl_knn,
"dense_labels": dense_labels,
"dense_colors": dense_colors,
}
self.sess = tf.Session()
def interpolate_labels(self, sparse_points, sparse_labels, dense_points, knn=3):
return self.sess.run(
[self.ops["dense_labels"], self.ops["dense_colors"]],
feed_dict={
self.ops["pl_sparse_points"]: sparse_points,
self.ops["pl_sparse_labels"]: sparse_labels,
self.ops["pl_dense_points"]: dense_points,
self.ops["pl_knn"]: knn,
},
)
if __name__ == "__main__":
# Parser
parser = argparse.ArgumentParser()
parser.add_argument("--set", default="validation", help="train, validation, test")
flags = parser.parse_args()
# Directories
sparse_dir = "result/sparse"
dense_dir = "result/dense"
gt_dir = "dataset/semantic_raw"
os.makedirs(dense_dir, exist_ok=True)
# Parameters
radius = 0.2
k = 20
# Global statistics
cm_global = ConfusionMatrix(9)
interpolator = Interpolator()
for file_prefix in map_name_to_file_prefixes[flags.set]:
print("Interpolating:", file_prefix, flush=True)
# Paths
sparse_points_path = os.path.join(sparse_dir, file_prefix + ".pcd")
sparse_labels_path = os.path.join(sparse_dir, file_prefix + ".labels")
dense_points_path = os.path.join(gt_dir, file_prefix + ".pcd")
dense_labels_path = os.path.join(dense_dir, file_prefix + ".labels")
dense_points_colored_path = os.path.join(
dense_dir, file_prefix + "_colored.pcd"
)
dense_gt_labels_path = os.path.join(gt_dir, file_prefix + ".labels")
# Sparse points
sparse_pcd = open3d.read_point_cloud(sparse_points_path)
sparse_points = np.asarray(sparse_pcd.points)
del sparse_pcd
print("sparse_points loaded", flush=True)
# Sparse labels
sparse_labels = load_labels(sparse_labels_path)
print("sparse_labels loaded", flush=True)
# Dense points
dense_pcd = open3d.read_point_cloud(dense_points_path)
dense_points = np.asarray(dense_pcd.points)
print("dense_points loaded", flush=True)
# Dense Ground-truth labels
try:
dense_gt_labels = load_labels(os.path.join(gt_dir, file_prefix + ".labels"))
print("dense_gt_labels loaded", flush=True)
except:
print("dense_gt_labels not found, treat as test set")
dense_gt_labels = None
# Assign labels
start = time.time()
dense_labels, dense_colors = interpolator.interpolate_labels(
sparse_points, sparse_labels, dense_points
)
print("KNN interpolation time: ", time.time() - start, "seconds", flush=True)
# Write dense labels
write_labels(dense_labels_path, dense_labels)
print("Dense labels written to:", dense_labels_path, flush=True)
# Write dense point cloud with color
dense_pcd.colors = open3d.Vector3dVector(dense_colors)
open3d.write_point_cloud(dense_points_colored_path, dense_pcd)
print("Dense pcd with color written to:", dense_points_colored_path, flush=True)
# Eval
if dense_gt_labels is not None:
cm = ConfusionMatrix(9)
cm.increment_from_list(dense_gt_labels, dense_labels)
cm.print_metrics()
cm_global.increment_from_list(dense_gt_labels, dense_labels)
pprint("Global results")
cm_global.print_metrics()