-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
246 lines (222 loc) · 8.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
import datetime
import numpy as np
import torch
from dataset.dataset_managers import DatasetGetter, KFoldManager
from utils.torch import get_device, save_model, load_model, freeze_parameters
from utils.log import TensorboardLogger
from utils.config import save_yaml
from utils.visualize import VisdomMonitor
from transformers_for_segmentation.get_model import get_model
from transformers_for_segmentation.common.model_interface import ModelInterface
def get_current_time() -> str:
"""
Generate current time as string.
Returns:
str: current time
"""
NOWTIMES = datetime.datetime.now()
curr_time = NOWTIMES.strftime("%y%m%d_%H%M%S")
return curr_time
def run_one_epoch(
dataset_loader, model_interface, device, is_train, visdom_monitor=None
):
loss_list, dice_list = [], []
for images, labels in dataset_loader:
images = images.to(device)
labels = labels.to(device)
result_dict = model_interface.step(
images=images, labels=labels, is_train=is_train
)
if visdom_monitor:
visdom_monitor.add_train_images(input_batches=images, label_batches=labels)
visdom_monitor.add_batched_label_images(
label_batches=result_dict["preds"], caption="Predicted Output"
)
loss_list.append(result_dict["loss"])
dice_list.append(result_dict["dice"])
return loss_list, dice_list
def train(
model_interface, k_fold_manager, epoch, dataset_loader, device, visdom_monitor
):
splits = list(k_fold_manager.split_dataset())
for epoch in range(epoch // len(splits)):
for (train_idx, val_idx) in splits:
results = {
"Train/Loss": None,
"Train/Dice Score": None,
"Validation/Loss": None,
"Validation/Dice Score": None,
"Test/Loss": None,
"Test/Dice Score": None,
}
# Train
k_fold_manager.set_dataset_fold(train_idx)
train_loss, train_dice = run_one_epoch(
dataset_loader, model_interface, device, True, visdom_monitor
)
results["Train/Loss"] = train_loss
results["Train/Dice Score"] = train_dice
# Validation
k_fold_manager.set_dataset_fold(val_idx)
val_loss, val_dice = run_one_epoch(
dataset_loader, model_interface, device, False, visdom_monitor
)
results["Validation/Loss"] = val_loss
results["Validation/Dice Score"] = val_dice
# Test
dataset_loader.dataset.set_test_mode()
test_loss, test_dice = run_one_epoch(
dataset_loader, model_interface, device, False, visdom_monitor
)
results["Test/Loss"] = test_loss
results["Test/Dice Score"] = test_dice
yield results
def test(model_interface, dataset_loader, device, visdom_monitor):
results = {
"Test/Loss": [],
"Test/Dice Score": [],
}
test_loss, test_dice = run_one_epoch(
dataset_loader, model_interface, device, False, visdom_monitor
)
results["Test/Loss"].extend(test_loss)
results["Test/Dice Score"].extend(test_dice)
yield results
def run(args):
device = get_device(args.device)
# Getting Dataset
dataset = DatasetGetter.get_dataset(
dataset_name=args.dataset_name,
path=args.dataset_path,
transform=None,
testset_ratio=args.testset_ratio if not args.test else None,
)
n_classes = dataset.n_classes
# Getting Dataset Loader
dataset_loader = DatasetGetter.get_dataset_loader(
dataset, batch_size=1 if args.test else args.batch_size
)
# Cross Validation
k_fold_manager = KFoldManager(dataset, args.n_folds) if not args.test else None
with torch.no_grad():
sampled_data = next(iter(dataset_loader))[0]
n_channel, n_seq, image_size = sampled_data.size()[1:4]
# Model Instantiation
model_cls = get_model(model_name=args.model_name)
model_args = dict(
image_size=image_size, n_channel=n_channel, n_seq=n_seq, n_classes=n_classes,
)
if args.model_config_file:
model_args["model_config_file_path"] = args.model_config_file
model = model_cls(**model_args).to(device)
if args.load_from:
load_model(
model,
args.load_from,
keywords_to_exclude=("decoder_output",)
if not args.test and args.use_pretrained_model
else None,
)
if args.use_pretrained_model:
freeze_parameters(
model, ("decoder_0", "decoder_3", "decoder_6", "decoder_9", "decoder_12")
)
# Train / Test Iteration
model_interface = ModelInterface(model=model, n_classes=n_classes)
epoch = 1 if args.test else args.epoch
# Init Logger
visdom_monitor = VisdomMonitor() if args.use_visdom_monitoring else None
if not args.test:
model_save_dir = "{}/{}/{}/".format(
args.save_dir, args.dataset_name, get_current_time()
)
logger = TensorboardLogger(model_save_dir)
save_yaml(vars(args), model_save_dir + "config.yaml")
save_yaml(model.configs, model_save_dir + "model_config.yaml")
results = (
test(model_interface, dataset_loader, device, visdom_monitor)
if args.test
else train(
model_interface,
k_fold_manager,
epoch,
dataset_loader,
device,
visdom_monitor,
)
)
for epoch, result in enumerate(results):
for key, value in result.items():
if args.test:
print("[{}] : {}".format(key, np.mean(value)))
else:
logger.log(tag=key, value=np.mean(value), step=epoch + 1)
# Save model
if (epoch + 1) % args.save_interval == 0:
save_model(model, model_save_dir, "epoch_{}".format(epoch + 1))
if not args.test:
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Transformer based Networks for Image Segmentation"
)
# dataset
parser.add_argument(
"--device",
type=str,
default="cuda",
help="Device name to use GPU (ex. cpu, cuda, mps, etc.)",
)
parser.add_argument(
"--dataset-name", type=str, default="btcv", help="Dataset name (ex. cifar10"
)
parser.add_argument(
"--dataset-path", type=str, default="data/btcv", help="Dataset path"
)
parser.add_argument(
"--n-folds",
type=int,
default=0,
help="Nuber of the folds in the k-fold cross validation(If this value is less than 1, do not cross-validation.",
)
parser.add_argument(
"--testset-ratio",
type=float,
default=0.2,
help="Ratio of data to use for testing.",
)
# model
parser.add_argument("--model-name", type=str, default="unetr", help="Model name")
parser.add_argument(
"--model-config-file", type=str, help="Model config file path",
)
# train / test
parser.add_argument("--epoch", type=int, default=800, help="Learning epoch")
parser.add_argument("--batch-size", type=int, default=128, help="Batch size")
parser.add_argument("--test", action="store_true", help="Whether to test the model")
parser.add_argument(
"--use-pretrained-model",
action="store_true",
help="Whether to use the pretrained model('load-from' arg must be activated)",
)
parser.add_argument(
"--use-visdom-monitoring",
action="store_true",
help="Whether to visualize inferenced results",
)
# save / load
parser.add_argument(
"--save-dir", type=str, default="checkpoints/", help="Dataset name (ex. cifar10"
)
parser.add_argument(
"--save-interval", type=int, default=50, help="Model save interval"
)
parser.add_argument("--load-from", type=str, help="Path to load the model")
parser.add_argument(
"--load-model-config",
action="store_true",
help="Whether to use the config file of the model to be loaded",
)
args = parser.parse_args()
run(args)