-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcvtf.py
55 lines (48 loc) · 2.1 KB
/
cvtf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Common utilities."""
import numpy as np
from PIL import Image
import tflite_runtime.interpreter as tflite
EDGETPU_SHARED_LIB = 'libedgetpu.so.1'
def make_interpreter(model_file):
model_file, *device = model_file.split('@')
return tflite.Interpreter(
model_path=model_file,
experimental_delegates=[
tflite.load_delegate(EDGETPU_SHARED_LIB,
{'device': device[0]} if device else {})
])
def set_input(interpreter, image, resample=Image.NEAREST):
"""Copies data to input tensor."""
image = image.resize((input_image_size(interpreter)[0:2]), resample)
input_tensor(interpreter)[:, :] = image
def input_image_size(interpreter):
"""Returns input image size as (width, height, channels) tuple."""
_, height, width, channels = interpreter.get_input_details()[0]['shape']
return width, height, channels
def input_tensor(interpreter):
"""Returns input tensor view as numpy array of shape (height, width, 3)."""
tensor_index = interpreter.get_input_details()[0]['index']
return interpreter.tensor(tensor_index)()[0]
def output_tensor(interpreter, i):
"""Returns dequantized output tensor if quantized before."""
output_details = interpreter.get_output_details()[i]
output_data = np.squeeze(interpreter.tensor(output_details['index'])())
if 'quantization' not in output_details:
return output_data
scale, zero_point = output_details['quantization']
if scale == 0:
return output_data - zero_point
return scale * (output_data - zero_point)