Skip to content

Main #39

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open

Main #39

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 49 additions & 4 deletions src/1-line-plot.ipynb

Large diffs are not rendered by default.

47 changes: 43 additions & 4 deletions src/2-bar-plot.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -9,18 +9,57 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGzCAYAAABzfl4TAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKF5JREFUeJzt3Xt4jHf+//HXmDCJiEQiRFaWFBUh2FJ01SGlm9rQWmpF2SUO7XcbUtV1tbq/OrRI+93VdhcNdS6NM9sumxRF+92tLorSFqVtVA9OiyRUQ5LP749e5jISZPjESDwf1zVXmzv33POeQ+KZe+6ZcRhjjAAAACyo5OsBAABAxUFYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENY4LYzaNAg1a9f39djeDhz5oyGDh2qiIgIORwOjRw50tcj3fIcDofGjx/v6zFuadxG8AXCAjds/vz5cjgcHqdatWopPj5emZmZN22Ozp07e8wQGhqqu+++W3PnzlVRUZGVy5g8ebL+/ve/W9nW5dudP3++/vCHP2jhwoX63e9+d9X1CwsLNW/ePHXu3FmhoaFyuVyqX7++kpOTtX37dq8v/7PPPtP48eOVnZ19ndcANyI1NVUOh0MHDx684jp/+tOf5HA4tHv37ps4GeA9P18PgIrj+eefV3R0tIwxOnr0qObPn69f//rX+sc//qHu3bvflBnq1q2rtLQ0SdLx48f1xhtvaMiQIfr888/14osv3vD2J0+erIcfflg9e/a84W1dauPGjWrXrp3GjRt3zXXPnTunXr16KSsrSx07dtSzzz6r0NBQZWdna9myZVqwYIG+/vpr1a1bt9SX/9lnn2nChAnq3LnzLbc350rOnTsnP7+K8Susf//+mjp1qjIyMjR27NgS11m8eLHi4uLUvHnzmzwd4J2K8VOJW0K3bt3UunVr99dDhgxR7dq1tXjxYithUVRUpPPnz8vf3/+K6wQHB2vAgAHurx977DE1btxY06ZN0wsvvKDKlSvf8Bxl4dixY4qNjS3VuqNHj1ZWVpZeeeWVYk+ZjBs3Tq+88koZTHhruPQxcLXHQXnTtm1bNWzYUIsXLy4xLLZs2aKvvvrKShwDZY2nQlBmQkJCFBAQUOyvyr/85S/65S9/qbCwMAUEBKhVq1ZasWJFsfM7HA4NHz5cb775ppo2bSqXy6WsrCyvZqhataratWuns2fP6vjx41dc7+zZs3rqqacUFRUll8ulxo0b6y9/+Ysu/fBfh8Ohs2fPasGCBe6nWwYNGnTVyz927Jg7sPz9/dWiRQstWLDA/f3NmzfL4XDoq6++0tq1a93bvdJTEt98841mzpyp+++/v8TjMJxOp/74xz+691YcOnRIjz/+uBo3bqyAgACFhYWpT58+HtufP3+++vTpI0mKj493z7B582b3OpmZmerQoYMCAwMVFBSkxMREffrpp8Uuf/ny5YqNjZW/v7+aNWum1atXl3hMS2lub+nqj4GSjh/49ttvNXjwYNWuXVsul0tNmzbV3Llzi805depUNW3aVFWrVlWNGjXUunVrZWRklHibS9LRo0fl5+enCRMmFPve/v375XA4NG3aNEnShQsXNGHCBDVq1Ej+/v4KCwvTvffeq/Xr119x+9JPey327dunHTt2FPteRkaGHA6H+vXrp/Pnz2vs2LFq1aqVgoODFRgYqA4dOmjTpk1X3b505eOLxo8fL4fDUWz5okWL1KpVKwUEBCg0NFRJSUk6fPiwxzoHDhxQ7969FRERIX9/f9WtW1dJSUnKycm55jyomNhjAWtycnJ04sQJGWN07NgxTZ06VWfOnPHYgyBJf/3rX/Xggw+qf//+On/+vJYsWaI+ffpozZo1SkxM9Fh348aNWrZsmYYPH66aNWte1276L7/8Uk6nUyEhISV+3xijBx98UJs2bdKQIUPUsmVLvfPOOxo9erS+/fZb9x6AhQsXaujQoWrTpo0effRRSVKDBg2ueLnnzp1T586ddfDgQQ0fPlzR0dFavny5Bg0apNOnT+uJJ55QkyZNtHDhQj355JOqW7eunnrqKUlSeHh4idvMzMxUQUHBNY/BuGjbtm364IMPlJSUpLp16yo7O1vp6enq3LmzPvvsM1WtWlUdO3ZUamqq/va3v+nZZ59VkyZNJMn934ULF2rgwIFKSEjQSy+9pB9++EHp6em69957tXPnTvd9snbtWvXt21dxcXFKS0vTqVOnNGTIEP3sZz+7rtv7otI+Bo4ePap27dq5YyQ8PFyZmZkaMmSIcnNz3SE2a9Yspaam6uGHH9YTTzyhH3/8Ubt379Z//vMfPfLIIyVuu3bt2urUqZOWLVtW7OmqpUuXyul0uuNs/PjxSktLcz9WcnNztX37du3YsUP333//Fe+r/v37a8KECcrIyNBdd93lXl5YWKhly5apQ4cO+vnPf64TJ05o9uzZ6tevn4YNG6a8vDzNmTNHCQkJ2rp1q1q2bHnFy/DGpEmT9Nxzz+m3v/2thg4dquPHj2vq1Knq2LGjdu7cqZCQEJ0/f14JCQnKz8/XiBEjFBERoW+//VZr1qzR6dOnFRwcbGUWlDMGuEHz5s0zkoqdXC6XmT9/frH1f/jhB4+vz58/b5o1a2buu+8+j+WSTKVKlcynn35aqjk6depkYmJizPHjx83x48fN3r17TWpqqpFkevTo4V5v4MCBpl69eu6v//73vxtJZuLEiR7be/jhh43D4TAHDx50LwsMDDQDBw4s1TyvvvqqkWQWLVrkcV3vueceU61aNZObm+teXq9ePZOYmHjNbT755JNGktm5c2epZrj8tjbGmC1bthhJ5o033nAvW758uZFkNm3a5LFuXl6eCQkJMcOGDfNYfuTIERMcHOyxPC4uztStW9fk5eW5l23evNlIuu7b+2qPAUlm3Lhx7q+HDBli6tSpY06cOOGxXlJSkgkODnbfFg899JBp2rRpse1dy8yZM40ks2fPHo/lsbGxHo/dFi1alOq+LMndd99t6tatawoLC93LsrKyjCQzc+ZMY4wxBQUFJj8/3+N8p06dMrVr1zaDBw/2WH75bXT5Y/+icePGmUv/OcjOzjZOp9NMmjTJY709e/YYPz8/9/KdO3caSWb58uXXdX1RMfFUCKyZPn261q9fr/Xr12vRokWKj4/X0KFDtWrVKo/1AgIC3P9/6tQp5eTkqEOHDiXuAu7UqVOpjz2QpH379ik8PFzh4eFq0qSJpk6dqsTExBJ3h1/0z3/+U06nU6mpqR7Ln3rqKRljrvuVLf/85z8VERGhfv36uZdVrlxZqampOnPmjN577z2vt5mbmytJCgoKKtX6l97WFy5c0H//+181bNhQISEhJd7el1u/fr1Onz6tfv366cSJE+6T0+lU27Zt3bvfv/vuO+3Zs0e///3vVa1aNff5O3XqpLi4OI9tent7l+YxYIzRypUr1aNHDxljPGZNSEhQTk6O+/qGhITom2++0bZt2655/S/Vq1cv+fn5aenSpe5ln3zyiT777DP17dvXvSwkJESffvqpDhw44NX2JWnAgAH65ptv9P7777uXZWRkqEqVKu49Ik6nU1WqVJH00zEnJ0+eVEFBgVq3bl2q+7Q0Vq1apaKiIv32t7/1uC0jIiLUqFEj9/1+cY/EO++8ox9++MHKZaP8IyxgTZs2bdS1a1d17dpV/fv319q1axUbG6vhw4fr/Pnz7vXWrFmjdu3ayd/fX6GhoQoPD1d6enqJz8lGR0d7NUP9+vW1fv16bdiwQf/617905MgRrVmzRjVr1rzieQ4dOqTIyMhi/1hffCrg0KFDXs1w6XYbNWqkSpU8f8xuZLvVq1eXJOXl5ZVq/XPnzmns2LHuYxlq1qyp8PBwnT59ulTPgV/8x/G+++5zB9vF07p163Ts2DGP69KwYcNi27h8mbe3d2keA8ePH9fp06f1+uuvF5szOTlZktyzPv3006pWrZratGmjRo0aKSUlRf/+97+veRk1a9ZUly5dtGzZMveypUuXys/PT7169XIve/7553X69GndeeediouL0+jRo0v9EtGkpCQ5nU738R4//vijVq9erW7duqlGjRru9RYsWKDmzZu7j+EIDw/X2rVrrR3XcODAARlj1KhRo2K35969e923ZXR0tEaNGqXZs2erZs2aSkhI0PTp0zm+4jbHMRYoM5UqVVJ8fLz++te/6sCBA2ratKn+7//+Tw8++KA6duyo1157TXXq1FHlypU1b968Eg+eu/Qv7tIIDAxU165dbV2FW05MTIwkac+ePaV6Ln3EiBGaN2+eRo4cqXvuuUfBwcFyOBxKSkoq1Xt7XFxn4cKFioiIKPb9m/Fyz9I8Bi7OOWDAAA0cOLDEdS6+TLNJkybav3+/1qxZo6ysLK1cuVKvvfaaxo4dW+LBmZdKSkpScnKydu3apZYtW2rZsmXq0qWLR7h27NhRX3zxhd566y2tW7dOs2fP1iuvvKIZM2Zo6NChV91+rVq1dP/992vlypWaPn26/vGPfygvL0/9+/d3r7No0SINGjRIPXv21OjRo1WrVi05nU6lpaXpiy++uOr2SzpAU/rpOI5LFRUVyeFwKDMzU06ns9j6l+6VmjJligYNGuS+vqmpqUpLS9OHH37o1UueUXEQFihTBQUFkn56Z0lJWrlypfz9/fXOO+/I5XK515s3b55P5pOkevXqacOGDcrLy/P4K3rfvn3u7190pV/MV9ru7t27VVRU5LHXoqTtlla3bt3kdDq1aNGiUh3AuWLFCg0cOFBTpkxxL/vxxx91+vRpj/WudL0uHpxaq1atqwbbxetS0hs8Xb7Mm9u7tMLDwxUUFKTCwsJShWVgYKD69u2rvn376vz58+rVq5cmTZqkMWPGXPVlrD179tRjjz3mfjrk888/15gxY4qtFxoaquTkZCUnJ+vMmTPq2LGjxo8ff82wkH46iDMrK0uZmZnKyMhQ9erV1aNHD/f3V6xYoTvuuEOrVq3yuN9K8x4oNWrUKHbfS8X3EjVo0EDGGEVHR+vOO++85nbj4uIUFxen//f//p8++OADtW/fXjNmzNDEiROveV5UPDwVgjJz4cIFrVu3TlWqVHHv5nY6nXI4HB5/IWVnZ5fJu1mW1q9//WsVFha6Xy540SuvvCKHw6Fu3bq5lwUGBpb4i/lK2z1y5IjHc/IFBQWaOnWqqlWrpk6dOnk9a1RUlIYNG6Z169Zp6tSpxb5fVFSkKVOm6JtvvpH00+1tLnsJ59SpU4v9hRoYGChJxa5bQkKCqlevrsmTJ+vChQvFLu/iS3gjIyPVrFkzvfHGG+6IlKT33ntPe/bs8TiPN7d3aTmdTvXu3VsrV67UJ598csU5Jem///2vx/eqVKmi2NhYGWNKvI6XCgkJUUJCgpYtW6YlS5aoSpUqxd4s7fLtV6tWTQ0bNlR+fn6prkvPnj1VtWpVvfbaa8rMzFSvXr08YufiHoRL79f//Oc/2rJlyzW33aBBA+Xk5Hg8NfP9999r9erVHuv16tVLTqdTEyZMKPb4Mca4r2Nubq77j4eL4uLiVKlSpVJfX1Q87LGANZmZme6/Oo8dO6aMjAwdOHBAzzzzjPvYgMTERL388st64IEH9Mgjj+jYsWOaPn26GjZs6LO3Ku7Ro4fi4+P1pz/9SdnZ2WrRooXWrVunt956SyNHjvR4SWmrVq20YcMGvfzyy4qMjFR0dLTatm1b4nYfffRRzZw5U4MGDdJHH32k+vXra8WKFfr3v/+tV199tdQHYF5uypQp+uKLL5SamqpVq1ape/fuqlGjhr7++mstX75c+/btU1JSkiSpe/fuWrhwoYKDgxUbG6stW7Zow4YNCgsL89hmy5Yt5XQ69dJLLyknJ0cul0v33XefatWqpfT0dP3ud7/TXXfdpaSkJIWHh+vrr7/W2rVr1b59e3cgTJ48WQ899JDat2+v5ORknTp1StOmTVOzZs08YsOb29sbL774ojZt2qS2bdtq2LBhio2N1cmTJ7Vjxw5t2LBBJ0+elCT96le/UkREhNq3b6/atWtr7969mjZtmhITE0t1n/Tt21cDBgzQa6+9poSEhGIvY46NjVXnzp3VqlUrhYaGavv27VqxYoWGDx9equtRrVo19ezZ0/3U4KVPg0g/3aerVq3Sb37zGyUmJuqrr77SjBkzFBsb63E7lyQpKUlPP/20fvOb3yg1NdX90uE777zT48DPBg0aaOLEiRozZoyys7PVs2dPBQUF6auvvtLq1av16KOP6o9//KM2btyo4cOHq0+fPrrzzjtVUFCghQsXukMPtykfvRoFFUhJLzf19/c3LVu2NOnp6aaoqMhj/Tlz5phGjRoZl8tlYmJizLx584q93M2Yn14ql5KSUuo5OnXqVKqXEZb0kru8vDzz5JNPmsjISFO5cmXTqFEj8+c//7nY7Pv27TMdO3Y0AQEBRtI1X3p69OhRk5ycbGrWrGmqVKli4uLizLx584qtV9qXm15UUFBgZs+ebTp06GCCg4NN5cqVTb169UxycrLHS1FPnTrlvvxq1aqZhIQEs2/fPlOvXr1is8+aNcvccccdxul0Fnvp6aZNm0xCQoIJDg42/v7+pkGDBmbQoEFm+/btHttYsmSJiYmJMS6XyzRr1sy8/fbbpnfv3iYmJsZjvdLe3ld7DOiyl1Ia89PtnZKSYqKiokzlypVNRESE6dKli3n99dfd68ycOdN07NjRhIWFGZfLZRo0aGBGjx5tcnJyrnGr/yQ3N9d9/1/6UuKLJk6caNq0aWNCQkJMQECAiYmJMZMmTTLnz58v1faNMWbt2rVGkqlTp47HS0+NMaaoqMhMnjzZ1KtXz7hcLvOLX/zCrFmzpsTHdUm30bp160yzZs1MlSpVTOPGjc2iRYtK/PkzxpiVK1eae++91wQGBprAwEATExNjUlJSzP79+40xxnz55Zdm8ODBpkGDBsbf39+Ehoaa+Ph4s2HDhlJfV1Q8DmMu288FABa1bNlS4eHh13znSQAVA8dYALDiwoULxZ5v37x5sz7++GN17tzZN0MBuOnYYwHAiuzsbHXt2lUDBgxQZGSk9u3bpxkzZig4OFiffPJJseM6AFRMHLwJwIoaNWqoVatWmj17to4fP67AwEAlJibqxRdfJCqA2wh7LAAAgDUcYwEAAKwhLAAAgDU3/RiLoqIifffddwoKCvLq7ZEBAIDvGGOUl5enyMjIYh+ueKmbHhbfffedoqKibvbFAgAACw4fPnzVD5i76WFx8S1zDx8+7H6bZwAAcGvLzc1VVFTUNd/6/qaHxcWnP6pXr05YAABQzlzrMAYO3gQAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsuekfmw4AuA1kXP2jtVGGHjE+vXj2WAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArPEqLAoLC/Xcc88pOjpaAQEBatCggV544QUZY8pqPgAAUI74ebPySy+9pPT0dC1YsEBNmzbV9u3blZycrODgYKWmppbVjAAAoJzwKiw++OADPfTQQ0pMTJQk1a9fX4sXL9bWrVuveJ78/Hzl5+e7v87Nzb3OUQEAwK3Oq6dCfvnLX+rdd9/V559/Lkn6+OOP9a9//UvdunW74nnS0tIUHBzsPkVFRd3YxAAA4Jbl1R6LZ555Rrm5uYqJiZHT6VRhYaEmTZqk/v37X/E8Y8aM0ahRo9xf5+bmEhcAAFRQXoXFsmXL9OabbyojI0NNmzbVrl27NHLkSEVGRmrgwIElnsflcsnlclkZFgAA3Nq8CovRo0frmWeeUVJSkiQpLi5Ohw4dUlpa2hXDAgAA3D68Osbihx9+UKVKnmdxOp0qKiqyOhQAACifvNpj0aNHD02aNEk///nP1bRpU+3cuVMvv/yyBg8eXFbzAQCAcsSrsJg6daqee+45Pf744zp27JgiIyP12GOPaezYsWU1HwAAKEcc5ia/bWZubq6Cg4OVk5Oj6tWr38yLBgDcLBkOX09w+3qkbP5ZL+2/33xWCAAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDV+vh4AKA2Hw9cT3L6M8fUEAMoT9lgAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGCN12Hx7bffasCAAQoLC1NAQIDi4uK0ffv2spgNAACUM37erHzq1Cm1b99e8fHxyszMVHh4uA4cOKAaNWqU1XwAAKAc8SosXnrpJUVFRWnevHnuZdHR0daHAgAA5ZNXT4W8/fbbat26tfr06aNatWrpF7/4hWbNmnXV8+Tn5ys3N9fjBAAAKiavwuLLL79Uenq6GjVqpHfeeUd/+MMflJqaqgULFlzxPGlpaQoODnafoqKibnhoAABwa3IYY0xpV65SpYpat26tDz74wL0sNTVV27Zt05YtW0o8T35+vvLz891f5+bmKioqSjk5OapevfoNjI7bicPh6wluX6X/DQFcIoMfWp95pGx+aHNzcxUcHHzNf7+92mNRp04dxcbGeixr0qSJvv766yuex+VyqXr16h4nAABQMXkVFu3bt9f+/fs9ln3++eeqV6+e1aEAAED55FVYPPnkk/rwww81efJkHTx4UBkZGXr99deVkpJSVvMBAIByxKuwuPvuu7V69WotXrxYzZo10wsvvKBXX31V/fv3L6v5AABAOeLV+1hIUvfu3dW9e/eymAUAAJRzfFYIAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANX6+HsAqh8PXE9y+jPH1BACAWwB7LAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsOaGwuLFF1+Uw+HQyJEjLY0DAADKs+sOi23btmnmzJlq3ry5zXkAAEA5dl1hcebMGfXv31+zZs1SjRo1bM8EAADKqesKi5SUFCUmJqpr167XXDc/P1+5ubkeJwAAUDH5eXuGJUuWaMeOHdq2bVup1k9LS9OECRO8HgwAAJQ/Xu2xOHz4sJ544gm9+eab8vf3L9V5xowZo5ycHPfp8OHD1zUoAAC49Xm1x+Kjjz7SsWPHdNddd7mXFRYW6v3339e0adOUn58vp9PpcR6XyyWXy2VnWgAAcEvzKiy6dOmiPXv2eCxLTk5WTEyMnn766WJRAQAAbi9ehUVQUJCaNWvmsSwwMFBhYWHFlgMAgNsP77wJAACs8fpVIZfbvHmzhTEAAEBFwB4LAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAa/x8PQCA25djgsPXI9y2zDjj6xFQQbHHAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAa7wKi7S0NN19990KCgpSrVq11LNnT+3fv7+sZgMAAOWMV2Hx3nvvKSUlRR9++KHWr1+vCxcu6Fe/+pXOnj1bVvMBAIByxM+blbOysjy+nj9/vmrVqqWPPvpIHTt2tDoYAAAof7wKi8vl5ORIkkJDQ6+4Tn5+vvLz891f5+bm3shFAgCAW9h1H7xZVFSkkSNHqn379mrWrNkV10tLS1NwcLD7FBUVdb0XCQAAbnHXHRYpKSn65JNPtGTJkquuN2bMGOXk5LhPhw8fvt6LBAAAt7jreipk+PDhWrNmjd5//33VrVv3quu6XC65XK7rGg4AAJQvXoWFMUYjRozQ6tWrtXnzZkVHR5fVXAAAoBzyKixSUlKUkZGht956S0FBQTpy5IgkKTg4WAEBAWUyIAAAKD+8OsYiPT1dOTk56ty5s+rUqeM+LV26tKzmAwAA5YjXT4UAAABcCZ8VAgAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACw5rrCYvr06apfv778/f3Vtm1bbd261fZcAACgHPI6LJYuXapRo0Zp3Lhx2rFjh1q0aKGEhAQdO3asLOYDAADliNdh8fLLL2vYsGFKTk5WbGysZsyYoapVq2ru3LllMR8AAChH/LxZ+fz58/roo480ZswY97JKlSqpa9eu2rJlS4nnyc/PV35+vvvrnJwcSVJubu71zItbFfdnhVWmd+2PZbhtXFWZ/w7+oWw3j6soo/v24mPGGHPV9bwKixMnTqiwsFC1a9f2WF67dm3t27evxPOkpaVpwoQJxZZHRUV5c9G41QUH+3oClBHu2oop+EXu2AprWNnet3l5eQq+yi8Gr8LieowZM0ajRo1yf11UVKSTJ08qLCxMDoejrC++3MjNzVVUVJQOHz6s6tWr+3ocWML9WnFx31Zc3LclM8YoLy9PkZGRV13Pq7CoWbOmnE6njh496rH86NGjioiIKPE8LpdLLpfLY1lISIg3F3tbqV69Og/kCoj7teLivq24uG+Lu9qeiou8OnizSpUqatWqld599133sqKiIr377ru65557vJ8QAABUKF4/FTJq1CgNHDhQrVu3Vps2bfTqq6/q7NmzSk5OLov5AABAOeJ1WPTt21fHjx/X2LFjdeTIEbVs2VJZWVnFDuiEd1wul8aNG1fsaSOUb9yvFRf3bcXFfXtjHOZarxsBAAAoJT4rBAAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hMUtYMuWLXI6nUpMTPT1KLBk0KBBcjgc7lNYWJgeeOAB7d6929ejwYIjR45oxIgRuuOOO+RyuRQVFaUePXp4vHkgypdLf2YrV66s2rVr6/7779fcuXNVVFTk6/HKFcLiFjBnzhyNGDFC77//vr777jtfjwNLHnjgAX3//ff6/vvv9e6778rPz0/du3f39Vi4QdnZ2WrVqpU2btyoP//5z9qzZ4+ysrIUHx+vlJQUX4+HG3DxZzY7O1uZmZmKj4/XE088oe7du6ugoMDX45UbZf4hZLi6M2fOaOnSpdq+fbuOHDmi+fPn69lnn/X1WLDA5XK5P0MnIiJCzzzzjDp06KDjx48rPDzcx9Phej3++ONyOBzaunWrAgMD3cubNm2qwYMH+3Ay3KhLf2Z/9rOf6a677lK7du3UpUsXzZ8/X0OHDvXxhOUDeyx8bNmyZYqJiVHjxo01YMAAzZ0795qfdY/y58yZM1q0aJEaNmyosLAwX4+D63Ty5EllZWUpJSXFIyou4gMWK5777rtPLVq00KpVq3w9SrlBWPjYnDlzNGDAAEk/7YbLycnRe++95+OpYMOaNWtUrVo1VatWTUFBQXr77be1dOlSVarEj115dfDgQRljFBMT4+tRcBPFxMQoOzvb12OUG/yG86H9+/dr69at6tevnyTJz89Pffv21Zw5c3w8GWyIj4/Xrl27tGvXLm3dulUJCQnq1q2bDh065OvRcJ3Ym3h7MsbI4XD4eoxyg2MsfGjOnDkqKChQZGSke5kxRi6XS9OmTSvV597j1hUYGKiGDRu6v549e7aCg4M1a9YsTZw40YeT4Xo1atRIDodD+/bt8/UouIn27t2r6OhoX49RbrDHwkcKCgr0xhtvaMqUKe6/anft2qWPP/5YkZGRWrx4sa9HhGUOh0OVKlXSuXPnfD0KrlNoaKgSEhI0ffp0nT17ttj3T58+ffOHQpnauHGj9uzZo969e/t6lHKDPRY+smbNGp06dUpDhgwptmeid+/emjNnjv7nf/7HR9PBhvz8fB05ckSSdOrUKU2bNk1nzpxRjx49fDwZbsT06dPVvn17tWnTRs8//7yaN2+ugoICrV+/Xunp6dq7d6+vR8R1uvgzW1hYqKNHjyorK0tpaWnq3r27fv/73/t6vHKDsPCROXPmqGvXriU+3dG7d2/97//+r3bv3q3mzZv7YDrYkJWVpTp16kiSgoKCFBMTo+XLl6tz586+HQw35I477tCOHTs0adIkPfXUU/r+++8VHh6uVq1aKT093dfj4QZc/Jn18/NTjRo11KJFC/3tb3/TwIEDOejaCw7D0UgAAMASEgwAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYM3/Byrur4s/KV4WAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# TASK: Create a bar plot with the following data: categories = ['A', 'B', 'C', 'D'] and values = [5, 7, 3, 9].\n",
"# Use different colors for each bar and add a title to the plot."
"# Use different colors for each bar and add a title to the plot.\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Data for the bar plot\n",
"categories = ['A', 'B', 'C', 'D']\n",
"values = [5, 7, 3, 9]\n",
"\n",
"# Create the bar plot with different colors for each bar\n",
"plt.bar(categories, values, color=['red', 'blue', 'green', 'orange'])\n",
"\n",
"# Add a title to the plot\n",
"plt.title('Bar Plot of Categories vs Values')\n",
"\n",
"# Display the plot\n",
"plt.show()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
Expand Down
51 changes: 47 additions & 4 deletions src/3-scatter-plot.ipynb

Large diffs are not rendered by default.

45 changes: 41 additions & 4 deletions src/4-pie-chart.ipynb

Large diffs are not rendered by default.

71 changes: 67 additions & 4 deletions src/5-subplot.ipynb

Large diffs are not rendered by default.

Loading