-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
320 lines (252 loc) · 16.7 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from circuit import prepare_data
from dataset import *
import os
from models import ModelEvaluator
from simulator import load_simulator
from utils import load_circuit, load_train_config, load_visual_config, \
save_result, check_save_data_status, saveDictToTxt, checkAlias, \
generate_train_config_for_single_pipeline, update_train_config_given_model_type, check_comparison_value_diff
from metrics import get_margin_error, get_relative_margin_error
from eval_model import *
from visualutils import plot_multiple_margin_with_confidence_entrypoint, \
plot_multiple_loss_with_confidence_entrypoint, plot_multiple_accuracy_with_confidence_entrypoint, \
plot_multiple_margin_with_confidence_comparison, plot_multiple_loss_with_confidence_comparison, \
plot_multiple_accuracy_per_epochs_with_confidence_comparison, \
plot_multiple_subset_parameter_margin_accuracy_with_confidence_entrypoint
from datetime import datetime
import time
def generate_dataset_given_config(train_config, circuit_config, dataset_config):
epsilon = train_config["epsilon"]
dataset_type = dataset_config["type"]
subset_parameter_mode = train_config["mode"]
if subset_parameter_mode not in ("drop", "replace"):
raise ValueError("Provided Parameter argmax replace policy is not defined")
if dataset_type == "Lourenco":
print("Return Lourenco Dataset")
dataset_config["n"] = 0.15 if "n" not in dataset_config else dataset_config["n"]
dataset_config["K"] = 15 if "K" not in dataset_config else dataset_config["K"]
return LorencoDataset(circuit_config["order"], circuit_config["sign"], dataset_config["n"], dataset_config["K"], dataset_config, epsilon)
if dataset_type =="Base":
print("Return Base Dataset")
return BaseDataset(circuit_config["order"], circuit_config["sign"], dataset_config)
if dataset_type =='SoftArgmax':
print("Return SoftArgMax Dataset")
return SoftArgMaxDataset(circuit_config["order"], circuit_config["sign"],
dataset_config, epsilon, subset_parameter_mode)
if dataset_type =='SoftBase':
print("Return Soft Base Dataset")
return SoftBaseDataset(circuit_config["order"], circuit_config["sign"], dataset_config, epsilon)
if dataset_type =='Ablation':
print("Return Ablation Duplication Dataset")
dataset_config["duplication"] = 20 if "duplication" not in dataset_config else dataset_config["duplication"]
return AblationDuplicateDataset(circuit_config["order"], circuit_config["sign"],
dataset_config["duplication"],
dataset_config, epsilon, subset_parameter_mode)
if dataset_type =='Argmax':
print("Return Argmax Dataset")
return ArgMaxDataset(circuit_config["order"], circuit_config["sign"],
dataset_config, epsilon, subset_parameter_mode)
def generate_circuit_given_config(circuit_name):
config_path = os.path.join(os.path.join(os.getcwd(), "config"), "circuits")
circuit_mapping = {
"nmos": os.path.join(os.path.join(config_path, "nmos"), "nmos.yaml"),
"cascode": os.path.join(os.path.join(config_path, "cascode"), "cascode.yaml"),
"lna": os.path.join(os.path.join(config_path, "LNA"), "LNA.yaml"),
"mixer": os.path.join(os.path.join(config_path, "mixer"), "mixer.yaml"),
"two_stage": os.path.join(os.path.join(config_path, "two_stage"), "two_stage.yaml"),
"vco": os.path.join(os.path.join(config_path, "VCO"), "VCO.yaml"),
"pa": os.path.join(os.path.join(config_path, "pa"), "pa.yaml"),
}
if circuit_name.lower() in circuit_mapping:
circuit_definition_path = circuit_mapping[circuit_name.lower()]
else:
raise KeyError("The circuit you defined does not exist")
circuit = load_circuit(circuit_definition_path)
return circuit
def generate_model_given_config(model_config,num_params,num_perf):
sklearn_model_mapping = {
"RandomForestRegressor": SklearnModel,
}
dl_model_mapping = {
"Model500GELU": Model500GELU,
}
lookup_model_mapping = {
"Lookup": None
}
if model_config["model"] in sklearn_model_mapping.keys():
eval_model = sklearn_model_mapping[model_config["model"]]
copy_model_config = dict(model_config)
copy_model_config.pop("extra_args", None)
copy_model_config.pop("model", None)
return eval_model(**copy_model_config), 0
elif model_config["model"] in dl_model_mapping.keys():
model_config['parameter_count'] = num_perf
model_config['output_count'] = num_params
eval_model = dl_model_mapping[model_config["model"]]
copy_model_config = dict(model_config)
copy_model_config.pop("extra_args", None)
copy_model_config.pop("model", None)
return eval_model(**copy_model_config), 1
elif model_config["model"] in lookup_model_mapping.keys():
return None, 2
else:
raise KeyError("The model you defined does not exist")
def generate_visual_given_result(result, train_config, visual_config, pipeline_save_name, dataset_type):
folder_path = os.path.join(os.path.join(os.getcwd(), "out_plot"), pipeline_save_name)
try:
os.mkdir(folder_path)
except:
pass #if less than a minute passed
result_dict = dict()
if train_config["test_margin_accuracy"] or train_config["train_margin_accuracy"]:
margin_plot_result = plot_multiple_margin_with_confidence_entrypoint(train_config, visual_config, result, pipeline_save_name, dataset_type)
result_dict.update(margin_plot_result)
if train_config["test_accuracy_per_epoch"] or train_config["train_accuracy_per_epoch"]:
accuracy_plot_result = plot_multiple_accuracy_with_confidence_entrypoint(train_config, visual_config, result, pipeline_save_name)
result_dict.update(accuracy_plot_result)
if train_config["loss_per_epoch"]:
loss_plot_result = plot_multiple_loss_with_confidence_entrypoint(train_config, visual_config, result, pipeline_save_name)
result_dict.update(loss_plot_result)
if train_config["subset_parameter_check"]:
subset_parameter_plot_result = plot_multiple_subset_parameter_margin_accuracy_with_confidence_entrypoint(train_config,
visual_config, result, pipeline_save_name)
result_dict.update(subset_parameter_plot_result)
return result_dict
def generate_circuit_status(circuit_config, parameter, performance, train_config, path):
circuit_dict = dict()
circuit_dict["num_parameter"] = parameter.shape[1]
circuit_dict["num_performance"] = performance.shape[1]
circuit_dict["data_size"] = performance.shape[0]
argmax_dataset = ArgMaxDataset(circuit_config["order"], circuit_config["sign"], train_config)
modified_parameter, modified_performance, extra_info = argmax_dataset.modify_data(parameter, performance, None, None, True)
circuit_dict["argmax_ratio"] = extra_info["Argmax_ratio"]
circuit_dict["argmax_modify_num"] = extra_info["Argmax_modify_num"]
circuit_dict["unique_param"] = np.unique(modified_parameter, axis=0).shape[0]
print(np.argmax(performance, axis=0))
saveDictToTxt(circuit_dict, path)
def pipeline(configpath):
train_config = load_train_config(configpath=configpath)
visual_config = load_visual_config()
if train_config["compare_dataset"] and train_config["compare_method"]:
raise ValueError("You cannot compare dataset and method at the same time")
if (train_config["compare_dataset"] or train_config["compare_method"]) and \
(len(train_config["model_config"]) > 1 and len(train_config["dataset"]) > 1):
raise ValueError("When you doing comparison testing, dataset and model can not be both greater than 1")
for circuit in train_config['circuits']:
print("Pipeline with {} circuit".format(circuit))
pipeline_cur_time = str(datetime.now().strftime('%Y-%m-%d %H-%M'))
if train_config["compare_dataset"]:
save_path = os.path.join(os.getcwd(), "out_plot", pipeline_cur_time + "-" + "compare-dataset-" + circuit)
else:
save_path = os.path.join(os.getcwd(), "out_plot", pipeline_cur_time + "-" + "compare-method-" + circuit)
print("Save comparison folder is {}".format(save_path))
compare_margin_error_mean_list = []
compare_margin_error_upper_bound_list = []
compare_margin_error_lower_bound_list = []
compare_loss_mean_list = []
compare_loss_upper_bound_list = []
compare_loss_lower_bound_list = []
compare_accuracy_per_epochs_mean_list = []
compare_accuracy_per_epochs_upper_bound_list = []
compare_accuracy_per_epochs_lower_bound_list = []
label = []
epochs = None
check_every = None
first_eval = None
test_margin_accuracy = None
loss_per_epoch = None
test_accuracy_per_epoch = None
for model_template_config in train_config["model_config"]:
print("Pipeline with {} model".format(model_template_config["model"]))
for dataset_type_config in train_config["dataset"]:
circuit_config = generate_circuit_given_config(circuit)
dataset = generate_dataset_given_config(train_config, circuit_config, dataset_type_config)
new_train_config = generate_train_config_for_single_pipeline(train_config, model_template_config, dataset_type_config)
simulator = load_simulator(circuit_config=circuit_config,
simulator_config=new_train_config['simulator_config'])
model, model_type = generate_model_given_config(dict(model_template_config),num_params=simulator.num_params,
num_perf=simulator.num_perf)
update_train_config_given_model_type(model_type, new_train_config)
if train_config["compare_dataset"] or train_config["compare_method"] or dataset_type_config[
"type"] not in ("SoftArgmax", "Argmax"):
new_train_config["subset_parameter_check"] = False
new_train_config["model_type"] = model_type
test_margin_accuracy = check_comparison_value_diff(new_train_config, test_margin_accuracy, "test_margin_accuracy")
loss_per_epoch = check_comparison_value_diff(new_train_config, loss_per_epoch, "loss_per_epoch")
test_accuracy_per_epoch = check_comparison_value_diff(new_train_config, test_accuracy_per_epoch, "test_accuracy_per_epoch")
if new_train_config["test_accuracy_per_epoch"]:
epochs = check_comparison_value_diff(new_train_config, epochs, "epochs")
check_every = check_comparison_value_diff(new_train_config, check_every, "check_every")
first_eval = check_comparison_value_diff(new_train_config, first_eval, "first_eval")
elif new_train_config["loss_per_epoch"]:
epochs = check_comparison_value_diff(new_train_config, epochs, "epochs")
if new_train_config["rerun_training"] or not check_save_data_status(circuit_config):
data_for_evaluation = prepare_data(simulator.parameter_list, simulator.arguments)
start =time.time()
print('start sim')
parameter, performance = simulator.runSimulation(data_for_evaluation, True)
print('took for sim', time.time()-start)
print('Params shape', parameter.shape)
print('Perfomance shape',performance.shape)
print("Saving metadata for this simulation")
metadata_path = os.path.join(circuit_config["arguments"]["out"], "metadata.txt")
saveDictToTxt(circuit_config["arguments"], metadata_path)
else:
print("Load from saved data")
parameter= np.load(os.path.join(simulator.arguments["out"], "x.npy"))
performance =np.load(os.path.join(simulator.arguments["out"], "y.npy"))
print("Check Alias Problem")
checkAlias(parameter, performance)
print("Generate Circuit Status")
circuit_status_path = os.path.join(os.getcwd(), circuit_config["arguments"]["out"], "circuit_stats.txt")
if not os.path.exists(circuit_status_path):
generate_circuit_status(circuit_config, parameter, performance, new_train_config, circuit_status_path)
print("Pipeline Start")
if new_train_config["metric"] == "absolute":
use_metric = get_margin_error
else:
use_metric = get_relative_margin_error
model_pipeline = ModelEvaluator(parameter, performance, dataset, metric=use_metric, simulator=simulator,
train_config=new_train_config, model=model)
cur_time = str(datetime.now().strftime('%Y-%m-%d %H-%M'))
pipeline_save_name = "{}-circuit-{}-dataset-{}-method-{}".format(circuit,
dataset_type_config["type"], model_template_config["model"], cur_time)
print("Pipeline save name is {}".format(pipeline_save_name))
result = model_pipeline.eval()
visual_result = generate_visual_given_result(result, new_train_config,
visual_config, pipeline_save_name, dataset_type_config["type"])
result.update(visual_result)
save_result(result, pipeline_save_name, configpath)
if new_train_config["compare_dataset"] or new_train_config["compare_method"]:
if new_train_config["loss_per_epoch"]:
compare_loss_mean_list.append(result["multi_train_loss"])
compare_loss_upper_bound_list.append(result["multi_train_loss_upper_bound"])
compare_loss_lower_bound_list.append(result["multi_train_loss_lower_bound"])
if new_train_config["test_accuracy_per_epoch"]:
compare_accuracy_per_epochs_mean_list.append(result["multi_test_accuracy"])
compare_accuracy_per_epochs_upper_bound_list.append(result["multi_test_accuracy_upper_bound"])
compare_accuracy_per_epochs_lower_bound_list.append(result["multi_test_accuracy_lower_bound"])
if new_train_config["test_margin_accuracy"]:
compare_margin_error_mean_list.append(result["multi_test_mean"])
compare_margin_error_lower_bound_list.append(result["multi_test_lower_bound"])
compare_margin_error_upper_bound_list.append(result["multi_test_upper_bound"])
if new_train_config["compare_dataset"]:
label.append(dataset_type_config["type"])
if new_train_config["compare_method"]:
label.append(model_template_config["model"])
if train_config["compare_dataset"] or train_config["compare_method"]:
if test_margin_accuracy:
plot_multiple_margin_with_confidence_comparison(compare_margin_error_mean_list,
compare_margin_error_upper_bound_list,
compare_margin_error_lower_bound_list,
label, train_config["subset"], save_path, visual_config)
if loss_per_epoch:
plot_multiple_loss_with_confidence_comparison(compare_loss_mean_list, compare_loss_upper_bound_list,
compare_loss_lower_bound_list, label, train_config["subset"],
save_path, visual_config, epochs)
if test_accuracy_per_epoch:
plot_multiple_accuracy_per_epochs_with_confidence_comparison(compare_accuracy_per_epochs_mean_list,
compare_accuracy_per_epochs_upper_bound_list,
compare_accuracy_per_epochs_lower_bound_list,
label, train_config["subset"], save_path,
visual_config, epochs, check_every, first_eval)