Code for Learning to Design Analog Circuits to Meet Threshold Specifications (Accepted by ICML 2023 as Poster)
- Preprint Coming Soon
- Website Comning Soon
To export running results to host machine:
- Create two folders, one for out_plot and another for result_out.
- Run the docker using command
docker run -v {absolute path to out_plot folder}:/Circuit-Synthesis/out_plot -v {absolute path to result_out folder}:/Circuit-Synthesis/result_out {docker image name} --path={Train config path}
Base dataset, DL, across data sizes with base test dataset, success rate as function of (two-sided) error margin:
python main.py --path=./config/config_template/problem1-compare-datasize-relative-Error-margin.yaml
Compare datasets construction methods using deep learning, 10-fold Cross Validation as a function of error margin:
python main.py --path=./config/config_template/problem2-compare-dataset-DL-10fold-absolute-Error-margin.yaml
Test success rate; Compare training methods (DL, lookup, RF, …) with “softargmax”, 10-fold cross validation as a function of error margin:
python main.py --path=./config/config_template/problem2-compare-method-Softargmax-10fold-absolute-Error-margin.yaml
Test success rate; Compare data sizes with DL, “softargmax” as a function of error margin:
python main.py --path=./config/config_template/problem2-compare-datasize-softArgmax-DL-Absolute-Error-margin.yaml
(Coming soon)