-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.py
192 lines (155 loc) · 5.68 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import ReadFile
import World
import streamlit as st
import Model
import networkx as nx
import matplotlib.pyplot as plt1
st.write("""
# Agent based custom compartment model
Customised epidemic compartment model on a complete graph using Episimmer codebase
""")
st.write("For any queries please email ibe214@nyu.edu")
st.write("------------------------------------------------------------------------------------")
interactions_files_list=None
events_files_list=None
locations_filename=None
config_obj=ReadFile.ReadConfiguration()
def generate_policy():
policy_list=[]
def event_restriction_fn(agent,event_info,current_time_step):
return False
return policy_list,event_restriction_fn
def write_agents(filename,n):
header='Agent Index'
f=open(filename,'w')
f.write(str(n)+'\n')
f.write(header+'\n')
for i in range(n):
f.write(str(i)+'\n')
def write_events(filename,no_locations,no_agents):
info_dict={}
#ID enumerates from 0 to n-1
header='Location Index:Agents'
f=open(filename,'w')
f.write(str(1)+'\n')
f.write(header+'\n')
line=str(0)+':'
for i in range(no_agents):
line+=str(i)
if i!=no_agents-1:
line+=','
f.write(line)
policy_list, event_restriction_fn=generate_policy()
filename='one_event.txt'
no_locations=1
no_agents=st.sidebar.slider("Select number of agents", min_value=0 , max_value=1000 , value=300 , step=10 , format=None , key=None )
write_agents('agents.txt',no_agents)
write_events('one_event.txt',1,no_agents)
days=st.sidebar.slider("Select number of days", min_value=1 , max_value=200 , value=100 , step=1 , format=None , key=None )
worlds=st.sidebar.slider("Select number of worlds", min_value=1 , max_value=30 , value=5 , step=1 , format=None , key=None )
config_obj.worlds=worlds
config_obj.time_steps=days
no_states=st.sidebar.slider("Select number of compartments", min_value=1 , max_value=10 , value=3 , step=1 , format=None , key=None )
no_transitions=st.sidebar.slider("Select number of transitions", min_value=0 , max_value=30 , value=2 , step=1 , format=None , key=None )
individual_types=[]
infected_states=[]
state_proportion={}
for i in range(no_states):
st.header("Compartment "+str(i+1))
col1, col2 = st.beta_columns(2)
default='None'
if i==0:
default='Susceptible'
if i==1:
default='Infected'
if i==2:
default='Recovered'
state = col1.text_input("Name of compartment "+str(i+1), default)
infectious=False
initial_prop=0
inf_default=False
if i==1:
inf_default=True
if state !='None':
infectious = st.checkbox("Is compartment \'"+state+"\' infectious?",inf_default)
if i==0 and no_states>1:
val=0.99
elif i==0 and no_states==1:
val=1.0
elif i==1:
val=0.01
else:
val=0.0
if state!='None':
initial_prop = col2.slider("Intial proportion of \'"+state+"\'", min_value=0.0 , max_value=1.0 , value=val , step=0.01 , format=None , key=None )
if state!='None':
individual_types.append(state)
if infectious:
infected_states.append(state)
state_proportion[state]=initial_prop
st.write("------------------------------------------------------------------------------------")
G = nx.DiGraph()
infectious_dict={}
model = Model.StochasticModel(individual_types,infected_states,state_proportion)
for i in range(no_transitions):
st.header("Transition "+str(i+1))
def_bool=False
if i==0 and infected_states!=[]:
def_bool=True
p_infection = st.checkbox("Does transition "+str(i+1)+" depend on infectious states?",def_bool)
col1, col2, col3 = st.beta_columns(3)
def_s1=def_s2=0
if i==0 and no_states>1:
def_s1=0
def_s2=1
if i==1 and no_states>2:
def_s1=1
def_s2=2
state1 = col1.selectbox("Initial compartment for transition "+str(i+1),individual_types,index=def_s1)
state2 = col2.selectbox("Final compartment for transition "+str(i+1),individual_types,index=def_s2)
G.add_edge(state1, state2)
if p_infection:
l=[]
for istate in infected_states:
l.append(None)
infectious_dict[istate]=float(col3.text_input("Rate of infection from compartment "+istate+ " for transition "+str(i+1), 0.01))
model.set_transition(state1, state2, model.p_infection(l,None))
else:
rate=float(col3.text_input("Rate constant for transition "+str(i+1), 0.03))
model.set_transition(state1, state2, model.p_standard(rate))
def event_contribute_fn(agent,event_info,location,current_time_step):
if agent.state in infected_states:
return infectious_dict[agent.state]
return 0
def event_recieve_fn(agent,ambient_infection,event_info,location,current_time_step):
#Example 1
beta=0.1
return ambient_infection*beta
model.set_event_contribution_fn(event_contribute_fn)
model.set_event_recieve_fn(event_recieve_fn)
#plt1.title('Custom compartment model')
#nx.draw_networkx(G, with_label = False, node_color ='green')
#st.pyplot(plt1)
agents_filename=config_obj.agents_filename
interactions_FilesList_filename=config_obj.interactions_files_list
if config_obj.locations_filename=="":
locations_filename=None
else:
locations_filename=config_obj.locations_filename
events_FilesList_filename=config_obj.events_files_list
if config_obj.interactions_files_list=='':
print('No Interaction files uploaded!')
else:
interactionFiles_obj=ReadFile.ReadFilesList(interactions_FilesList_filename)
interactions_files_list=list(map(lambda x : x ,interactionFiles_obj.file_list))
if interactions_files_list==[]:
print('No Interactions inputted')
if config_obj.events_files_list=='':
print('No Event files uploaded!')
else:
eventFiles_obj=ReadFile.ReadFilesList(events_FilesList_filename)
events_files_list=list(map(lambda x : x ,eventFiles_obj.file_list))
if events_files_list==[]:
print('No Events inputted')
world_obj=World.World(config_obj,model,policy_list,event_restriction_fn,agents_filename,interactions_files_list,locations_filename,events_files_list)
world_obj.simulate_worlds()