-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwandb_yolo_sweep.yaml
126 lines (116 loc) · 1.82 KB
/
wandb_yolo_sweep.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
command:
- "srun"
- "-c"
- "16"
- "--gres=gpu:1,gpumem:24G"
- "--mem"
- "32G"
- "--time=10:00:00"
- ${env}
- yolo
- ${program}
- ${args_no_hyphens}
program: train
method: bayes
metric:
name: metrics/mAP50-95(B)
goal: maximize
parameters:
model:
value: ./DATA/yolov8n.pt
data:
value: './DATA/datasets/ant_subset_1-000+colonias_640x640_crops/ant_subset_1-000+colonias_640x640_crops.yaml'
imgsz:
value: 640
single_cls:
value: True
epochs:
value: 500
batch:
distribution: int_uniform
min: 50
max: 100
optimizer:
values: ["Adam", "SGD"]
warmup_epochs:
value: 10
lr0:
distribution: uniform
max: 0.01
min: 0.001
lrf:
distribution: uniform
max: 0.001
min: 0.0001
cos_lr:
values:
- True
- False
momentum:
distribution: uniform
max: 0.974
min: 0.9
dropout:
values: [0.0, 0.25, 0.5, 0.75]
nms:
values:
- True
- False
agnostic_nms:
value: True
iou:
distribution: uniform
min: 0.5
max: 1
hsv_h:
distribution: uniform
min: 0
max: 0.3
hsv_s:
distribution: uniform
min: 0
max: 0.5
hsv_v:
distribution: uniform
min: 0
max: 0.5
degrees:
distribution: uniform
min: 60
max: 180
translate:
distribution: uniform
min: 0
max: 0.5
scale:
distribution: uniform
min: 0
max: 1
flipud:
distribution: uniform
min: 0
max: 0.5
fliplr:
distribution: uniform
min: 0
max: 0.5
mosaic:
distribution: uniform
min: 0
max: 1
shear:
distribution: uniform
min: 0
max: 15
perspective:
distribution: uniform
min: 0
max: 0.001
mixup:
distribution: uniform
min: 0
max: 0.12
copy_paste:
distribution: uniform
min: 0
max: 1