Skip to content

ikhwanperwira/ecg-deep-denoiser-delineator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ECG Deep Denoiser and Delineator

This project focuses on ECG denoising and delineation using deep learning techniques. The following steps will guide you through setting up the environment and running the training and evaluation scripts. Trained on LUDB and Evaluated on QTDB.

Architecture

Architecture Banner

Setup Instructions

  1. Download Dataset for Windows: Execute the following command to download the required dataset:
.\download_dataset.cmd
  1. Create Virtual Environment: Create a virtual environment to manage dependencies:
python -m venv .venv
  1. Install Dependencies: Install the necessary Python packages using the provided requirements file:
pip install -r requirements.txt

Denoising

For detailed instructions of the denoising model, please refer to the Deep Filter repository: Deep Filter

Delineation

  • Preprocessing: Preprocesses the delineation data locally for training purposes.

    This function performs preprocessing on the delineation data and returns the results in two formats:

    • .npz: A compressed file format that stores multiple NumPy arrays.
    • .pkl: A pickle file that serializes Python objects.
  • Training: Follow the training notebook available on Kaggle: ECG Delineation 80Hz 256WinSize

  • Evaluation on Unseen Data: Evaluate the model on unseen data using the following Kaggle notebook: QTDB Unseen Eval ECG Delineation 80Hz 256WinSize

Result

Result Banner

QTDB Unseen Overall

Classes PPV TPR F1 TNR NPV ACC
BL 82.1 89 85.4 78.6 86.6 84
QRS 90 73.3 80.8 98.7 95.9 95.2
T 87.3 80.1 83.6 96.5 94.1 92.7
P 74.9 75.3 75.1 97 97.1 94.7
Overall Accuracy 83.3

QTDB Unseen Per Subject

Record Lead Pathology Classes PPV TPR F1 TNR NPV ACC
sel32 ECG1 Sudden Death (BIH) BL 75.3 95.8 84.3 73.9 95.4 83.8
QRS 96.6 55.8 70.7 99.6 91.3 91.8
T 90.7 80.2 85.1 97.3 93.7 93.1
P 92.7 77.5 84.4 99.2 97 96.6
Overall Accuracy 82.6
sel32 ECG2 Sudden Death (BIH) BL 75.4 77.4 76.4 66.9 69.2 72.8
QRS 93.3 64.6 76.3 99 92.6 92.7
T 51.4 55.2 53.2 89.7 91.1 84.1
P 52.3 70.3 60 94.1 97.1 92
Overall Accuracy 70.8
sel49 ECG1 Sudden Death (BIH) BL 63.5 88.4 73.9 50.8 81.9 69.3
QRS 77.8 67.3 72.2 97.5 95.9 94.1
T 92.6 36.8 52.7 98.5 76.1 78.3
P 60.9 79.8 69.1 96.4 98.6 95.3
Overall Accuracy 68.5
sel49 ECG2 Sudden Death (BIH) BL 72.4 94.7 82.1 61.1 91.4 78.5
QRS 94.5 38.4 54.6 99.5 88.6 89
T 85.3 70.5 77.2 96.1 91 89.8
P 30.2 23.1 26.1 96.3 94.8 91.6
Overall Accuracy 74.5
sel14046 ECG1 MIT-BIH Long-Term ECG BL 85.7 88.8 87.2 82.9 86.5 86.1
QRS 91.6 81.1 86 98.9 97.2 96.6
T 90.7 85.5 88 97 95.1 94
P 65.9 75 70.2 96.8 97.9 95.2
Overall Accuracy 85.9
sel14046 ECG2 MIT-BIH Long-Term ECG BL 95 78.7 86.1 93.5 73.9 84.5
QRS 68.6 92.2 78.7 95.7 99.2 95.4
T 70.9 89.8 79.3 92.2 97.7 91.8
P 81.2 98.1 88.9 96.8 99.7 96.9
Overall Accuracy 84.3
sel15814 ECG1 MIT-BIH Long-Term ECG BL 74.8 81.7 78.1 81.3 86.7 81.4
QRS 99 75.8 85.8 99.8 93.2 94.2
T 92.2 85.4 88.6 97.3 94.6 94
P 56 79 65.6 93.8 97.8 92.5
Overall Accuracy 81.1
sel15814 ECG2 MIT-BIH Long-Term ECG BL 69.3 95.1 80.2 68.1 94.9 79.7
QRS 99 73.7 84.5 99.8 93.2 94.1
T 94.7 79.6 86.5 98.4 93.2 93.5
P 59.4 17.6 27.2 98.8 92.4 91.5
Overall Accuracy 79.4

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages