-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
82 lines (65 loc) · 2.84 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# MIT License
# Copyright (c) 2024 Ika Nurfitriani
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import streamlit as st
import pandas as pd
import numpy as np
import pickle
model_path = 'diabetes_model.pkl'
scaler_path = 'scaler.pkl'
with open(model_path, 'rb') as file:
model = pickle.load(file)
with open(scaler_path, 'rb') as file:
scaler = pickle.load(file)
def user_input_features():
pregnancies = st.number_input('Pregnancies', 0, 20, 1)
glucose = st.number_input('Glucose', 0, 300, 100)
blood_pressure = st.number_input('Blood Pressure', 0, 150, 70)
skin_thickness = st.number_input('Skin Thickness', 0, 99, 20)
insulin = st.number_input('Insulin', 0, 900, 79)
bmi = st.number_input('BMI', 0.0, 70.0, 32.0)
diabetes_pedigree_function = st.number_input('Diabetes Pedigree Function', 0.0, 3.0, 0.5)
age = st.number_input('Age', 21, 100, 33)
data = {
'Pregnancies': pregnancies,
'Glucose': glucose,
'BloodPressure': blood_pressure,
'SkinThickness': skin_thickness,
'Insulin': insulin,
'BMI': bmi,
'DiabetesPedigreeFunction': diabetes_pedigree_function,
'Age': age
}
features = pd.DataFrame(data, index=[0])
return features
st.title('Diabetes Prediction')
df = user_input_features()
st.subheader('User Input Parameters')
st.write(df)
if st.button('Predict'):
df_scaled = scaler.transform(df)
prediction = model.predict(df_scaled)
st.subheader('Prediction')
diabetes = np.array(['Non-diabetic', 'Diabetic'])
st.write(diabetes[prediction][0])
try:
prediction_proba = model.predict_proba(df_scaled)
st.subheader('Prediction Probability')
st.write(prediction_proba)
except AttributeError:
st.subheader('Prediction Probability')
st.write("Probability estimates are not available for this model.")