-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
169 lines (150 loc) · 5.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch.nn as nn
import torch
import copy
import torch.nn.init as init
class RF_VAE2(nn.Module):
"""Encoder and Decoder architecture for 3D Shapes, Celeba, Chairs data.
Taken entirely from github.com/ThomasMrY/RF-VAE"""
def __init__(self, z_dim=10):
super(RF_VAE2, self).__init__()
self.z_dim = z_dim
self.encode = nn.Sequential(
nn.Conv2d(3, 32, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(32, 32, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(32, 64, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(64, 64, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(64, 256, 4, 1),
nn.ReLU(True),
nn.Conv2d(256, 2*z_dim, 1)
)
self.decode = nn.Sequential(
nn.Conv2d(z_dim, 256, 1),
nn.ReLU(True),
nn.ConvTranspose2d(256, 64, 4),
nn.ReLU(True),
nn.ConvTranspose2d(64, 64, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(64, 32, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(32, 32, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(32, 3, 4, 2, 1),
)
self.weight_init()
def weight_init(self, mode='normal'):
if mode == 'kaiming':
initializer = kaiming_init
elif mode == 'normal':
initializer = normal_init
for block in self._modules:
for m in self._modules[block]:
initializer(m)
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = std.data.new(std.size()).normal_()
return eps.mul(std).add_(mu)
def forward(self, x, no_dec=False):
stats = self.encode(x)
mu = stats[:, :self.z_dim]
logvar = stats[:, self.z_dim:]
z = self.reparametrize(mu, logvar)
if no_dec:
return z.squeeze()
else:
x_recon = self.decode(z)
return x_recon, mu, logvar, z.squeeze()
def kaiming_init(m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
init.kaiming_normal_(m.weight)
if m.bias is not None:
m.bias.data.fill_(0)
elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
m.weight.data.fill_(1)
if m.bias is not None:
m.bias.data.fill_(0)
def normal_init(m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
init.normal_(m.weight, 0, 0.02)
if m.bias is not None:
m.bias.data.fill_(0)
elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
m.weight.data.fill_(1)
if m.bias is not None:
m.bias.data.fill_(0)
def loadEncoder(rfvae_name, rfvae_dims):
print("Loading encoder...")
rfvae = RF_VAE2(rfvae_dims)
checkpoint = torch.load(rfvae_name)
rfvae.load_state_dict(checkpoint['model_states']['VAE'])
# remove decoder:
encoder = rfvae.encode
return encoder
class NeuralNetwork(nn.Module):
def __init__(self, encoder):
super(NeuralNetwork, self).__init__()
self.z_dim = 10
self.encoder = copy.deepcopy(encoder)
# freeze encoder layers:
i = 0
for layer in self.encoder:
if i < 8:
layer.trainable = False
i += 1
for name, param in self.encoder.named_parameters():
if param.requires_grad and '8' not in name and '10' not in name:
param.requires_grad = False
self.fully_connected = nn.Sequential(
nn.Linear(10, 7),
nn.ReLU(),
nn.Linear(7, 4),
nn.ReLU(),
nn.Linear(4, 1))
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = std.data.new(std.size()).normal_()
return eps.mul(std).add_(mu)
def forward(self, x):
stats = self.encoder(x)
mu = stats[:, :self.z_dim]
logvar = stats[:, self.z_dim:]
z = self.reparametrize(mu, logvar).squeeze()
logits = self.fully_connected(z)
return logits
class NeuralNetworkDemographics(nn.Module):
def __init__(self, encoder):
super(NeuralNetworkDemographics, self).__init__()
self.z_dim = 10
self.encoder = copy.deepcopy(encoder)
# freeze encoder layers:
i = 0
for layer in self.encoder:
if i < 8:
layer.trainable = False
i += 1
for name, param in self.encoder.named_parameters():
if param.requires_grad and '8' not in name and '10' not in name:
param.requires_grad = False
self.fully_connected = nn.Sequential(
nn.Linear(14, 512),
nn.ReLU(),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
nn.Linear(128, 1))
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = std.data.new(std.size()).normal_()
return eps.mul(std).add_(mu)
def forward(self, x, demo):
stats = self.encoder(x)
mu = stats[:, :self.z_dim]
logvar = stats[:, self.z_dim:]
z = self.reparametrize(mu, logvar).squeeze()
final = torch.cat((z, demo), dim=1)
logits = self.fully_connected(final)
return logits