-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
485 lines (366 loc) · 20.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import argparse
import copy
import datetime
import math
import json
import os
import random
import sys
import uuid
import numpy as np
import torch
import torch.nn as nn
from help_get_eval_components import get_eval_components, ModelEvaluation
from help_get_net_components import get_net_components
from dataset_utils import get_train_dataset
from dataset_utils import get_train_iterator
from dataset_utils import get_validation_dataset
from dataset_utils import get_validation_iterator
from dataset_utils import get_train_and_validation
from trainer import build_net as trainer_build_net
from flags import stringify_flags, init_with_flags_file, save_flags
from experiment_logger import ExperimentLogger, configure_experiment, get_logger
def count_params(net):
return sum([x.numel() for x in net.parameters() if x.requires_grad])
def save_experiment(experiment_file, metadata):
with open(experiment_file, 'w') as f:
f.write(json.dumps(metadata, indent=4, sort_keys=True))
def build_net(options, embeddings, batch_iterator=None, word2idx=None):
cuda = options.cuda
context = {}
context['cuda'] = cuda
context['embeddings'] = embeddings
context['batch_iterator'] = batch_iterator
context['word2idx'] = word2idx
net_components = get_net_components(options, context)
trainer = trainer_build_net(options, context=context, net_components=net_components)
logger = get_logger()
logger.info('# of params = {}'.format(count_params(trainer.net)))
return trainer
def generate_seeds(n, seed=11):
random.seed(seed)
seeds = [random.randint(0, 2**16) for _ in range(n)]
return seeds
def run_evaluation(options, trainer, model_evaluation, info, metadata):
logger = get_logger()
lst = []
for eval_result_dict in model_evaluation.run(trainer, info, metadata):
eval_result = eval_result_dict['result']
eval_name = eval_result['name']
for k, v in eval_result['meta'].items():
logger.info('eval[{}] {}={}'.format(eval_name, k, v))
lst.append(eval_result_dict)
return lst
class MyTrainIterator(object):
def __init__(self, options, batch_iterator, trainer):
self.options = options
self.batch_iterator = batch_iterator
self.trainer = trainer
def get_iterator(self):
options = self.options
logger = get_logger()
logger.info('Generating seeds for {} epochs using initial seed {}.'.format(options.max_epoch, options.seed))
seeds = generate_seeds(options.max_epoch, options.seed)
for epoch, seed in zip(range(options.max_epoch), seeds):
assert epoch == self.trainer.optimizer_epoch
logger.info('epoch={} seed={}'.format(epoch, seed))
it = self.batch_iterator.get_iterator(random_seed=seed, epoch=epoch)
def iter_func_filter_length(it, min_length=3):
for batch_map in it:
batch_size, length = batch_map['sentences'].shape
if length < min_length:
continue
yield batch_map
it = iter_func_filter_length(it)
def iter_func_add_end_of_epoch(it):
batch_map_ = None
end_of_epoch = False
for batch_map in it:
# yield the previous batch
if batch_map_ is not None:
yield batch_map_, end_of_epoch
# the last batch is not yielded yet
batch_map_ = batch_map
# yield the last batch here
end_of_epoch = True
yield batch_map_, end_of_epoch
it = iter_func_add_end_of_epoch(it)
for batch_idx, (batch_map, end_of_epoch) in enumerate(it):
step = self.trainer.optimizer_step
first_in_subbatch = (batch_idx % options.accum_steps) == 0
last_in_subbatch = (batch_idx % options.accum_steps) == (options.accum_steps - 1)
last_in_subbatch = last_in_subbatch or end_of_epoch
should = {}
should['zero_grad'] = first_in_subbatch is True
should['update'] = (last_in_subbatch is True) or end_of_epoch
should['end_of_epoch'] = end_of_epoch
should['log'] = step % options.log_every_batch == 0 and options.log_every_batch > 0 and last_in_subbatch
should['periodic'] = step % options.save_latest == 0 and step >= options.save_after and last_in_subbatch
should['distinct'] = step % options.save_distinct == 0 and step >= options.save_after and last_in_subbatch
should_eval_for_batch = (
options.eval_every_batch > 0 and
step % options.eval_every_batch == 0 and
step >= options.eval_after and last_in_subbatch
)
should_eval_for_epoch = (
end_of_epoch and
options.eval_every_epoch > 0 and
epoch % options.eval_every_epoch == 0 and
step >= options.eval_after
)
should['eval'] = should_eval_for_batch or should_eval_for_epoch
yield batch_map, should
if options.max_step >= 0 and step >= options.max_step:
logger.info('Max-Step={} Quitting.'.format(options.max_step))
sys.exit()
def run_train(options, train_iterator, trainer, model_evaluation):
logger = get_logger()
experiment_logger = ExperimentLogger()
logger.info('Running train.')
best_step = 0
best_metric = math.inf
best_dict = {}
my_iterator = MyTrainIterator(options, train_iterator, trainer)
for batch_map, should in my_iterator.get_iterator():
step = trainer.optimizer_step
epoch = trainer.optimizer_epoch
epoch_step = trainer.optimizer_epoch_step
# Forward pass.
trainer_output = trainer.step(batch_map)
# Backward pass.
result, model_output = trainer_output['result'], trainer_output['model_output']
total_loss = model_output['total_loss'].mean(dim=0).sum()
total_loss = total_loss / options.accum_steps
trainer.backward_and_maybe_update(total_loss, update=should['update'], zero_grad=should['zero_grad'])
# Record result.
experiment_logger.record(result)
del result
if should['log']:
metrics = experiment_logger.log_batch(epoch, step, epoch_step)
# -- Periodic Checkpoints -- #
if should['periodic']:
logger.info('Saving model (periodic).')
trainer.save_model(os.path.join(options.experiment_path, 'model_periodic.pt'))
save_experiment(os.path.join(options.experiment_path, 'experiment_periodic.json'),
dict(step=step, epoch=epoch, best_step=best_step, best_metric=best_metric))
if should['distinct']:
logger.info('Saving model (distinct).')
trainer.save_model(os.path.join(options.experiment_path, 'model.step_{}.pt'.format(step)))
save_experiment(os.path.join(options.experiment_path, 'experiment.step_{}.json'.format(step)),
dict(step=step, epoch=epoch, best_step=best_step, best_metric=best_metric))
# -- Validation -- #
if should['eval']:
logger.info('Evaluation.')
info = dict()
info['experiment_path'] = options.experiment_path
# info['step'] = step
# info['epoch'] = epoch
for eval_result_dict in run_evaluation(options, trainer, model_evaluation, info, metadata=dict(step=step)):
result = eval_result_dict['result']
func = eval_result_dict['component']
name = func.name
for key, val, is_best in func.compare(best_dict, result):
best_dict_key = 'best__{}__{}'.format(name, key)
# Early stopping.
if is_best:
if best_dict_key in best_dict:
prev_val = best_dict[best_dict_key]['value']
else:
prev_val = None
# Update running result.
best_dict[best_dict_key] = {}
best_dict[best_dict_key]['eval'] = name
best_dict[best_dict_key]['metric'] = key
best_dict[best_dict_key]['value'] = val
best_dict[best_dict_key]['step'] = step
best_dict[best_dict_key]['epoch'] = epoch
logger.info('Recording, best eval, key = {}, val = {} -> {}, json = {}'.format(
best_dict_key, prev_val, val, json.dumps(best_dict[best_dict_key])))
if step >= options.save_after:
logger.info('Saving model, best eval, key = {}, json = {}'.format(
best_dict_key, json.dumps(best_dict[best_dict_key])))
logger.info('checkpoint_dir = {}'.format(options.experiment_path))
# Save result and model.
trainer.save_model(
os.path.join(options.experiment_path, 'model.{}.pt'.format(best_dict_key)))
save_experiment(os.path.join(options.experiment_path, 'experiment.{}.json'.format(best_dict_key)),
best_dict[best_dict_key])
# END OF EPOCH
if should['end_of_epoch']:
experiment_logger.log_epoch(epoch, step)
trainer.end_of_epoch(best_dict)
def run(options):
logger = get_logger()
experiment_logger = ExperimentLogger()
train_dataset, validation_dataset = get_train_and_validation(options)
train_iterator = get_train_iterator(options, train_dataset)
validation_iterator = get_validation_iterator(options, validation_dataset)
embeddings = train_dataset['embeddings']
word2idx = train_dataset['word2idx']
logger.info('Initializing model.')
trainer = build_net(options, embeddings, train_iterator, word2idx=word2idx)
logger.info('Model:')
for name, p in trainer.net.named_parameters():
logger.info('{} {} {}'.format(name, p.shape, p.requires_grad))
# Evaluation.
context = {}
context['dataset'] = validation_dataset
context['batch_iterator'] = validation_iterator
model_evaluation = ModelEvaluation(get_eval_components(options, context, config_lst=options.eval_config))
if options.eval_only_mode:
info = dict()
info['experiment_path'] = options.experiment_path
info['step'] = 0
for eval_result_dict in run_evaluation(options, trainer, model_evaluation, info, metadata=dict(step=0)):
result = eval_result_dict['result']
func = eval_result_dict['component']
name = func.name
for key, val, _ in func.compare({}, result):
best_dict_key = 'best__{}__{}'.format(name, key)
save_dict = {}
save_dict['eval'] = name
save_dict['metric'] = key
save_dict['value'] = val
save_dict['step'] = -1
save_dict['epoch'] = -1
save_path = os.path.join(options.experiment_path, 'eval.{}.json'.format(best_dict_key))
save_experiment(save_path, save_dict)
logger.info('saved eval output to {}'.format(save_path))
sys.exit()
if options.save_init:
logger.info('Saving model (init).')
trainer.save_model(os.path.join(options.experiment_path, 'model_init.pt'))
run_train(options, train_iterator, trainer, model_evaluation)
def argument_parser():
parser = argparse.ArgumentParser()
# Debug.
parser.add_argument('--seed', default=None, type=int, help='Random seed.')
parser.add_argument('--torch_version', default=None, type=str, help='[debug] Torch version.')
parser.add_argument('--git_sha', default=None, type=str, help='[debug] Git SHA.')
parser.add_argument('--git_branch_name', default=None, type=str, help='[debug] Git branch name.')
parser.add_argument('--git_dirty', default=None, type=str, help='[debug] Indicates whether there are uncommited changes.')
parser.add_argument('--uuid', default=None, type=str, help='[debug] Unique identifier for experiment.')
parser.add_argument('--hostname', default=None, type=str)
# Pytorch
parser.add_argument('--cuda', action='store_true', help='If true, use GPU.')
# Logging.
parser.add_argument('--default_experiment_directory', default='./log', type=str)
parser.add_argument('--experiment_name', default=None, type=str)
parser.add_argument('--experiment_path', default=None, type=str)
parser.add_argument('--log_every_batch', default=10, type=int, help='Log every N updates.')
parser.add_argument('--save_latest', default=1000, type=int, help='Save a checkpoint every N updates. Overwrites previous checkpoints.')
parser.add_argument('--save_distinct', default=50000, type=int, help='Save a checkpoint every N updates. Does not overwrite.')
parser.add_argument('--save_after', default=1000, type=int, help='Only save after N updates.')
parser.add_argument('--save_init', action='store_true', help='If true, save initialization.')
# Data.
parser.add_argument('--init_vocab_path', default=None, type=str,
help='If provided, add vocab from this file. Useful for certain cases such as adversarial word substitution.')
parser.add_argument('--data_type', default='nli', type=str)
parser.add_argument('--train_data_type', default=None, type=str)
parser.add_argument('--validation_data_type', default=None, type=str)
parser.add_argument('--train_path', default=os.path.expanduser('~/data/snli_1.0/snli_1.0_train.jsonl'), type=str)
parser.add_argument('--validation_path', default=os.path.expanduser('~/data/snli_1.0/snli_1.0_dev.jsonl'), type=str)
parser.add_argument('--embeddings_path', default=os.path.expanduser('~/data/glove/glove.6B.300d.txt'), type=str,
help='Necessary if using word embeddings (w2v). Not used if character-based embeddings set (elmo).')
# Data (preprocessing).
parser.add_argument('--nolowercase', action='store_true')
parser.add_argument('--require_ner', action='store_true')
parser.add_argument('--require_output_vocab', action='store_true')
parser.add_argument('--output_vocab', default=None, type=str)
parser.add_argument('--train_filter_length', default=50, type=int)
parser.add_argument('--validation_filter_length', default=0, type=int)
# Loading.
parser.add_argument('--load_model_path', default=None, type=str)
# Evaluation.
parser.add_argument('--eval_every_batch', default=1000, type=int)
parser.add_argument('--eval_every_epoch', default=-1, type=int)
parser.add_argument('--eval_after', default=0, type=int)
parser.add_argument('--eval_config', default=None, action='append')
# Model.
parser.add_argument('--input_config', default=None, type=str)
parser.add_argument('--model_config', default=None, type=str)
parser.add_argument('--loss_config', default=None, action='append')
# Model (Embeddings).
parser.add_argument('--emb', default='w2v', choices=('w2v', 'elmo'))
parser.add_argument('--emb_lang', default='en', type=str)
parser.add_argument('--projection', default='word2vec', choices=('word2vec',))
# ELMo
parser.add_argument('--elmo_options_path', default='https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_options.json', type=str)
parser.add_argument('--elmo_weights_path', default='https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5', type=str)
parser.add_argument('--elmo_cache_dir', default=None, type=str)
parser.add_argument('--emb_cache_dir', default=None, type=str)
parser.add_argument('--version', default='medium', type=str)
# Training.
parser.add_argument('--batch_size', default=10, type=int, help='Batch size.')
parser.add_argument('--accum_steps', default=1, type=int, help='Hyperparam for gradient accumulation.')
parser.add_argument('--train_dataset_size', default=None, type=int)
parser.add_argument('--validation_dataset_size', default=None, type=int)
parser.add_argument('--validation_batch_size', default=None, type=int)
parser.add_argument('--max_epoch', default=5000, type=int, help='Max number of training epochs (if > 0).')
parser.add_argument('--max_step', default=-1, type=int, help='Max number of gradient steps (if > 0).')
parser.add_argument('--eval_only_mode', action='store_true', help='Run evaluation only.')
# Optimization.
opt_types = ('sgd', 'adam')
parser.add_argument('--opt', default='sgd', choices=opt_types)
parser.add_argument('--lr', default=4e-3, type=float, help='Learning rate.')
parser.add_argument('--num_warmup_steps', default=1, type=int)
parser.add_argument('--weight_decay', default=0, type=float)
parser.add_argument('--mlp_reg', default=0, type=float)
parser.add_argument('--clip_threshold', default=5.0, type=float)
parser.add_argument('--warmup', default=1000, type=int)
parser.add_argument('--use_lr_scheduler', action='store_true')
parser.add_argument('--lr_metric', default=None, type=str)
return parser
def parse_args(parser):
options, other_args = parser.parse_known_args()
# Set default flag values (data).
options.train_data_type = options.data_type if options.train_data_type is None else options.train_data_type
options.validation_data_type = options.data_type if options.validation_data_type is None else options.validation_data_type
options.validation_batch_size = options.batch_size if options.validation_batch_size is None else options.validation_batch_size
# Set default flag values (config).
if not options.git_branch_name:
options.git_branch_name = os.popen(
'git rev-parse --abbrev-ref HEAD').read().strip()
if not options.torch_version:
options.torch_version = torch.__version__
if not options.git_sha:
options.git_sha = os.popen('git rev-parse HEAD').read().strip()
if not options.git_dirty:
options.git_dirty = os.popen("git diff --quiet && echo 'clean' || echo 'dirty'").read().strip()
if not options.uuid:
options.uuid = str(uuid.uuid4())
if not options.hostname:
options.hostname = os.popen('hostname').read().strip()
if not options.experiment_name:
timestamp = datetime.datetime.now().strftime("%Y%m%d-%s")
options.experiment_name = '{}-{}'.format(options.train_data_type, timestamp)
if not options.experiment_path:
options.experiment_path = os.path.join(options.default_experiment_directory, options.experiment_name)
for k, v in options.__dict__.items():
if type(v) == str and v.startswith('~'):
options.__dict__[k] = os.path.expanduser(v)
if options.elmo_cache_dir is not None:
print('WARNING: Use `emb_cache_dir` instead. Rewriting `emb_cache_dir` with `elmo_cache_dir`, but `elmo_cache_dir` will be removed in future versions.')
options.emb_cache_dir = options.elmo_cache_dir
# Create a `no`-prefix equivalent for all boolean flags.
options.lowercase = not options.nolowercase
# Random seed.
if options.seed is None:
options.seed = np.random.randint(2147483648)
options.hidden_dim = list(json.loads(options.model_config).values())[0].get('size', 400)
return options
def configure(options):
# Configure output paths for this experiment.
configure_experiment(options.experiment_path)
# Get logger.
logger = get_logger()
# Print flags.
logger.info(stringify_flags(options))
save_flags(options, options.experiment_path)
if __name__ == '__main__':
from preprocessing import set_random_seed
parser = argument_parser()
options = parse_args(parser)
configure(options)
set_random_seed(options.seed)
run(options)