-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_constraint.py
1213 lines (967 loc) · 40.7 KB
/
eval_constraint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import collections
import json
import os
import subprocess
import nltk
from nltk.tree import Tree
from nltk.treeprettyprinter import TreePrettyPrinter
import numpy as np
import torch
from tqdm import tqdm
from cky import ParsePredictor as CKY
from experiment_logger import get_logger
from evaluation_utils import BaseEvalFunc
word_tags = set(['CC', 'CD', 'DT', 'EX', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN',
'NNS', 'NNP', 'NNPS', 'PDT', 'POS', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS',
'RP', 'SYM', 'TO', 'UH', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ',
'WDT', 'WP', 'WP$', 'WRB'])
class ConstraintCKY(object):
def __init__(self, net, word2idx, scalars_key='inside_s_components', initial_scalar=1):
super(ConstraintCKY, self).__init__()
self.net = net
self.idx2word = {v: k for k, v in word2idx.items()}
self.initial_scalar = initial_scalar
self.scalars_key = scalars_key
def predict(self, batch_map, return_components=False):
def filter_span(span_lst):
def filter_(lst):
return [sp for sp in lst if sp[1] > 1]
return [filter_(lst) for lst in span_lst]
batch = batch_map['sentences']
example_ids = batch_map['example_ids']
#batch_span = [gt['ner_span'] for gt in batch_map['ground_truth']]
batch_span = filter_span(batch_map['ner_labels'])
batch_size = self.net.batch_size
trees, components = self.parse_batch(batch,batch_span)
out = []
for i in range(batch_size):
assert trees[i] is not None
out.append(dict(example_id=example_ids[i], binary_tree=trees[i]))
if return_components:
return (out, components)
return out
def parse_batch(self, batch, batch_span, cell_loss=False, return_components=False):
batch_size = self.net.batch_size
length = self.net.length
scalars = self.net.cache[self.scalars_key].copy()
device = self.net.device
dtype = torch.float32
# Assign missing scalars
for i in range(length):
scalars[0][i] = torch.full((batch_size, 1), self.initial_scalar, dtype=dtype, device=device)
leaves = [None for _ in range(batch_size)]
for i in range(batch_size):
batch_i = batch[i].tolist()
leaves[i] = [self.idx2word[idx] for idx in batch_i]
trees, components = self.batched_cky(scalars, leaves, batch_span)
return trees, components
def initial_chart(self,batch_span):
batch_size = self.net.batch_size
length = self.net.length
device = self.net.device
dtype = torch.float32
# spans: [[[start,length],[]],[[],[],...],...]
chart = [torch.full((length-i, batch_size), 1, dtype=dtype, device=device) for i in range(length)]
for idx, spans in enumerate(batch_span):
for span in spans:
level = span[1]-1
assert level>0
pos = span[0]
# cross = range(min(0,pos-level),max(length-level,pos+level))
# for i in cross:
# chart[level][min(0,pos-level):max(length-level,pos+level),idx] = float('-inf')
chart[level][pos,idx] = 10000.0
return chart
def batched_cky(self, scalars, leaves, batch_span):
batch_size = self.net.batch_size
length = self.net.length
device = self.net.device
dtype = torch.float32
# Chart.
chart = self.initial_chart(batch_span)
components = {}
# Backpointers.
bp = {}
for ib in range(batch_size):
bp[ib] = [[None] * (length - i) for i in range(length)]
bp[ib][0] = [i for i in range(length)]
for level in range(1, length):
L = length - level
N = level
for pos in range(L):
pairs, lps, rps, sps = [], [], [], []
# Assumes that the bottom-left most leaf is in the first constituent.
spbatch = scalars[level][pos]
for idx in range(N):
# (level, pos)
l_level = idx
l_pos = pos
r_level = level-idx-1
r_pos = pos+idx+1
# assert l_level >= 0
# assert l_pos >= 0
# assert r_level >= 0
# assert r_pos >= 0
l = (l_level, l_pos)
r = (r_level, r_pos)
lp = chart[l_level][l_pos].view(-1, 1)
rp = chart[r_level][r_pos].view(-1, 1)
sp = spbatch[:, idx].view(-1, 1)
lps.append(lp)
rps.append(rp)
sps.append(sp)
pairs.append((l, r))
lps, rps, sps = torch.cat(lps, 1), torch.cat(rps, 1), torch.cat(sps, 1)
ps = lps + rps + sps
components[(level, pos)] = ps
argmax = ps.argmax(1).long()
valmax = ps[range(batch_size), argmax]
chart[level][pos, :] += valmax
for i, ix in enumerate(argmax.tolist()):
bp[i][level][pos] = pairs[ix]
trees = []
for i in range(batch_size):
tree = self.follow_backpointers(bp[i], leaves[i], bp[i][-1][0])
trees.append(tree)
return trees, components
def follow_backpointers(self, bp, words, pair):
if isinstance(pair, int):
return words[pair]
l, r = pair
lout = self.follow_backpointers(bp, words, bp[l[0]][l[1]])
rout = self.follow_backpointers(bp, words, bp[r[0]][r[1]])
return (lout, rout)
def to_raw_parse(tr, tokens):
def helper(tr, pos=0):
if isinstance(tr, (str, int)):
size = 1
return '(DT {})'.format(tokens[pos]), size
nodes = []
size = 0
for x in tr:
xnode, xsize = helper(x, pos + size)
nodes.append(xnode)
size += xsize
return '(S {})'.format(' '.join(nodes)), size
node, _ = helper(tr)
return '(ROOT {})'.format(node)
def to_raw_parse_nopunct(tr, tokens, part_of_speech):
mask = [x in word_tags for x in part_of_speech]
new_tokens = [x for x, m in zip(tokens, mask) if m]
new_tr, kept, removed = remove_using_flat_mask_nary_tree(tr, mask)
return to_raw_parse(new_tr, new_tokens)
def gt_to_raw_parse_nopunct(tr, tokens, part_of_speech):
mask = [x in word_tags for x in part_of_speech]
new_tokens = [x for x, m in zip(tokens, mask) if m]
new_tr, kept, removed = gt_remove_using_flat_mask_nary_tree(tr, mask)
return new_tr.pformat(margin=10000)
def gt_remove_using_flat_mask_nary_tree(tr, mask):
"""
Input:
tr: A tree such as (ROOT (S (X a) (G (Y b) (Z c) (Z d)))).
mask: Boolean mask with length same as tree leaves
such as [True, False, True, True].
Returns:
A new tree with tokens removed according to mask
such as (ROOT (S (X a) (G (Z c) (Z d)))).
"""
kept, removed = [], []
def func(tr, pos=0):
if len(tr) == 1 and isinstance(tr[0], (int, str)):
if mask[pos] == False:
removed.append(tr)
return None, 1
kept.append(tr)
return tr, 1
size = 0
children = []
for x in tr:
xnode, xsize = func(x, pos=pos + size)
if xnode is not None:
children.append(xnode)
size += xsize
if len(children) == 1:
return children[0], size
if len(children) == 0:
return None, size
new_tr = nltk.Tree(tr.label(), children=children)
return new_tr, size
new_tree, _ = func(tr)
return new_tree, kept, removed
def remove_using_flat_mask_nary_tree(tr, mask):
"""
Input:
tr: A tree such as (ROOT (S (X a) (G (Y b) (Z c) (Z d)))).
mask: Boolean mask with length same as tree leaves
such as [True, False, True, True].
Returns:
A new tree with tokens removed according to mask
such as (ROOT (S (X a) (G (Z c) (Z d)))).
"""
kept, removed = [], []
def func(tr, pos=0):
if not isinstance(tr, (list, tuple)):
if mask[pos] == False:
removed.append(tr)
return None, 1
kept.append(tr)
return tr, 1
size = 0
node = []
for subtree in tr:
x, xsize = func(subtree, pos=pos + size)
if x is not None:
node.append(x)
size += xsize
for x in node:
if isinstance(x, (list, tuple)):
assert len(x) > 1
if len(node) == 1:
node = node[0]
elif len(node) == 0:
return None, size
if isinstance(node, list):
node = tuple(node)
return node, size
new_tree, _ = func(tr)
return new_tree, kept, removed
def convert_to_nltk(tr, label='|'):
def helper(tr):
if not isinstance(tr, (list, tuple)):
return '({} {})'.format(label, tr)
nodes = []
for x in tr:
nodes.append(helper(x))
return '({} {})'.format(label, ' '.join(nodes))
return helper(tr)
def example_f1(gt, pred):
correct = len(gt.intersection(pred))
if correct == 0:
return 0., 0., 0.
gt_total = len(gt)
pred_total = len(pred)
prec = float(correct) / pred_total
recall = float(correct) / gt_total
f1 = 2 * (prec * recall) / (prec + recall)
return f1, prec, recall
def tree_to_spans(tree):
spans = []
def helper(tr, pos):
if not isinstance(tr, (list, tuple)):
size = 1
return size
elif isinstance(tr, Tree) and len(tr.leaves()) == 1:
size = 1
return size
size = 0
for x in tr:
xpos = pos + size
xsize = helper(x, xpos)
size += xsize
spans.append((pos, size))
return size
helper(tree, 0)
return spans
# def tree_to_spans(tree):
# spans = []
# def helper(tr, pos):
# if not isinstance(tr, (list, tuple)):
# size = 1
# return size
# size = 0
# for x in tr:
# xpos = pos + size
# xsize = helper(x, xpos)
# size += xsize
# spans.append((pos, size))
# return size
# helper(tree, 0)
# return spans
def spans_to_tree(spans, tokens):
length = len(tokens)
# Add missing spans.
span_set = set(spans)
for pos in range(length):
if pos not in span_set:
spans.append((pos, 1))
spans = sorted(spans, key=lambda x: (x[1], x[0]))
pos_to_node = {}
root_node = None
for i, span in enumerate(spans):
pos, size = span
if i < length:
assert i == pos
node = (pos, size, tokens[i])
pos_to_node[pos] = node
continue
node = (pos, size, [])
for i_pos in range(pos, pos+size):
child = pos_to_node[i_pos]
c_pos, c_size = child[0], child[1]
if i_pos == c_pos:
node[2].append(child)
pos_to_node[i_pos] = node
def helper(node):
pos, size, x = node
if isinstance(x, str):
return x
return tuple([helper(xx) for xx in x])
root_node = pos_to_node[0]
tree = helper(root_node)
return tree
class TreesFromDiora(object):
def __init__(self, diora, word2idx, outside, oracle):
self.diora = diora
self.word2idx = word2idx
self.idx2word = {idx: w for w, idx in word2idx.items()}
self.outside = outside
self.oracle = oracle
def to_spans(self, lst):
return [(pos, level + 1) for level, pos in lst]
def predict(self, batch_map):
batch_size, length = batch_map['sentences'].shape
example_ids = batch_map['example_ids']
tscores = [0.0] * batch_size
K = self.diora.K
for i_b in range(batch_size):
tokens = batch_map['ground_truth'][i_b]['tokens']
root_level, root_pos = length - 1, 0
spans = self.to_spans(self.diora.cache['inside_tree'][(i_b, 0)][(root_level, root_pos)])
binary_tree = spans_to_tree(spans, tokens)
other_trees = []
yield dict(example_id=example_ids[i_b], binary_tree=binary_tree, binary_tree_score=tscores[i_b], other_trees=other_trees)
class NERComponent(BaseEvalFunc):
def init_defaults(self):
self.agg_mode = 'sum'
self.cky_mode = 'sum'
self.ground_truth = None
self.inside_pool = 'sum'
self.oracle = {'use': False}
self.outside = True
self.seed = 121
self.semi_supervised = False
self.K = None
self.choose_tree = 'local'
def compare(self, prev_best, results):
out = []
# F1
key = 'f1'
best_dict_key = 'best__{}__{}'.format(self.name, key)
val = results['meta'][key]
is_best = True
if best_dict_key in prev_best:
prev_val = prev_best[best_dict_key]['value']
is_best = prev_val < val
out.append((key, val, is_best))
#
return out
def parse(self, trainer, info):
logger = self.logger
multilayer = False
diora = trainer.get_single_net(trainer.net).diora
if hasattr(diora, 'layers'):
multilayer = True
pred_lst = []
for i, layer in enumerate(diora.layers):
logger.info(f'Diora Layer {i}:')
pred = self.single_layer_parser(trainer, layer, info)
pred_lst.append(pred)
else:
pred_lst = self.single_layer_parser(trainer, diora, info)
return pred_lst, multilayer
def single_layer_parser(self, trainer, diora, info):
logger = self.logger
epoch = info.get('epoch', 0)
original_K = diora.K
if self.K is not None:
diora.safe_set_K(self.K)
# set choose_tree
if hasattr(diora, 'choose_tree'):
original_choose_tree = diora.choose_tree
diora.choose_tree = self.choose_tree
word2idx = self.dataset['word2idx']
if self.cky_mode == 'cky':
parse_predictor = CKY(net=diora, word2idx=word2idx)
elif self.cky_mode == 'constrained_cky':
parse_predictor = ConstraintCKY(net=diora, word2idx=word2idx)
elif self.cky_mode == 'diora':
parse_predictor = TreesFromDiora(diora=diora, word2idx=word2idx, outside=self.outside, oracle=self.oracle)
batches = self.batch_iterator.get_iterator(random_seed=self.seed, epoch=epoch)
logger.info('Parsing.')
pred_lst = []
counter = 0
eval_cache = {}
if self.ground_truth is not None:
self.ground_truth = os.path.expanduser(self.ground_truth)
ground_truth_data = {}
with open(self.ground_truth) as f:
for line in f:
ex = json.loads(line)
ground_truth_data[ex['example_id']] = ex
# Eval loop.
with torch.no_grad():
for i, batch_map in enumerate(batches):
batch_size, length = batch_map['sentences'].shape
if length <= 2:
continue
example_ids = batch_map['example_ids']
if self.ground_truth is not None:
batch_ground_truth = [ground_truth_data[x] for x in example_ids]
batch_map['ground_truth'] = batch_ground_truth
_ = trainer.step(batch_map, train=False, compute_loss=False, info={ 'inside_pool': self.inside_pool, 'outside': self.outside })
for j, x in enumerate(parse_predictor.predict(batch_map)):
pred_lst.append(x)
self.eval_loop_hook(trainer, diora, info, eval_cache, batch_map)
self.post_eval_hook(trainer, diora, info, eval_cache)
diora.safe_set_K(original_K)
# set choose_tree
if hasattr(diora, 'choose_tree'):
diora.choose_tree = original_choose_tree
return pred_lst
def eval_loop_hook(self, trainer, diora, info, eval_cache, batch_map):
pass
def post_eval_hook(self, trainer, diora, info, eval_cache):
pass
def run(self, trainer, info):
logger = self.logger
outfile = info.get('outfile', None)
pred_lst, multilayer = self.parse(trainer, info)
corpus = collections.OrderedDict()
# Read the ground truth.
with open(self.ground_truth) as f:
for line in f:
ex = json.loads(line)
corpus[ex['example_id']] = ex
total_instance = 0
num_ner_span = 0
covered_ner_spans = 0
num_addition_span = 0
covered_addition_span = 0
path = outfile + '.constraint' +'.coverage'
for x in pred_lst:
total_instance+=1
example_id = x['example_id']
pred_span = set(tree_to_spans(x['binary_tree']))
if 'ner_span' in corpus[example_id]:
ner_span = set([tuple(tmp) for tmp in corpus[example_id]['ner_span']])
ner_overlap = len(ner_span.intersection(pred_span))
num_ner_span+=len(ner_span)
covered_ner_spans+=ner_overlap
if 'additional_constraint' in corpus[example_id]:
addition_span = set([tuple(tmp) for tmp in corpus[example_id]['additional_constraint']])
addition_overlap = len(addition_span.intersection(pred_span))
num_addition_span += len(addition_span)
covered_addition_span+=addition_overlap
with open(path,'w') as f:
f.write('total instance '+str(total_instance) + '\n')
f.write('num ner span '+str(num_ner_span)+ '\n')
f.write('num covered ner spans '+ str(covered_ner_spans) + '\n')
if num_ner_span >0:
f.write('accuracy '+ str(float(covered_ner_spans)/num_ner_span)+ '\n')
print('ner accuracy: '+str(float(covered_ner_spans)/num_ner_span))
else:
f.write('accuracy None''\n')
f.write('num additional span '+str(num_addition_span)+ '\n')
f.write('num covered additional spans '+ str(covered_addition_span) + '\n')
if num_addition_span >0:
f.write('accuracy '+ str(float(covered_addition_span)/num_addition_span)+ '\n')
print('additional accuracy: '+str(float(covered_addition_span)/num_addition_span))
else:
f.write('accuracy None''\n')
# Write more general format.
path = outfile + '.pred'
logger.info('writing parse tree output -> {}'.format(path))
with open(path, 'w') as f:
for x in pred_lst:
pred_binary_tree = x['binary_tree']
example_id = x['example_id']
gt = corpus[example_id]
tokens = corpus[example_id]['tokens']
f.write(to_raw_parse(pred_binary_tree, tokens) + '\n')
path = outfile + '.pred.nopunct'
logger.info('writing parse tree output -> {}'.format(path))
with open(path, 'w') as f:
for x in pred_lst:
pred_binary_tree = x['binary_tree']
example_id = x['example_id']
gt = corpus[example_id]
part_of_speech = [x[1] for x in nltk.Tree.fromstring(gt['raw_parse']).pos()]
tokens = corpus[example_id]['tokens']
f.write(to_raw_parse_nopunct(pred_binary_tree, tokens, part_of_speech) + '\n')
pred_path = path
path = outfile + '.gold'
logger.info('writing parse tree output -> {}'.format(path))
with open(path, 'w') as f:
for x in pred_lst:
example_id = x['example_id']
gt = corpus[example_id]
f.write(gt['raw_parse'] + '\n')
path = outfile + '.gold.nopunct'
logger.info('writing parse tree output -> {}'.format(path))
with open(path, 'w') as f:
for x in pred_lst:
example_id = x['example_id']
gt = corpus[example_id]
tokens = gt['tokens']
part_of_speech = [x[1] for x in nltk.Tree.fromstring(gt['raw_parse']).pos()]
gt_nltk_tree = nltk.Tree.fromstring(gt['raw_parse'])
f.write(gt_to_raw_parse_nopunct(gt_nltk_tree, tokens, part_of_speech) + '\n')
gold_path = path
path = outfile + '.diora'
logger.info('writing parse tree output -> {}'.format(path))
with open(path, 'w') as f:
for x in pred_lst:
example_id = x['example_id']
gt = corpus[example_id]
tokens = gt['tokens']
o = collections.OrderedDict()
o['example_id'] = example_id
o['binary_tree'] = x['binary_tree']
o['raw_parse'] = to_raw_parse(x['binary_tree'], tokens)
o['tokens'] = tokens
f.write(json.dumps(o) + '\n')
evalb_path = './EVALB/evalb'
if not os.path.exists(evalb_path):
build_command = 'cd {} && make'.format(os.path.dirname(evalb_path))
logger.info('Building EVALB. $ {}'.format(build_command))
os.system(build_command)
config_path = './EVALB/diora.prm'
out_path = outfile + '.evalb'
evalb_command = '{evalb} -p {evalb_config} {gold} {pred} > {out}'.format(
evalb=evalb_path,
evalb_config=config_path,
gold=gold_path,
pred=pred_path,
out=out_path)
logger.info('Running eval. $ {}'.format(evalb_command))
subprocess.run(evalb_command, shell=True)
# Parse EVALB Results
with open(out_path) as f:
evalb_results = collections.defaultdict(dict)
section = None
for line in f:
line = line.strip()
if not line:
continue
if line.startswith('--') and line.endswith('--'):
section = line[3:-3]
continue
if section is None:
continue
key, val = line.split('=')
key = key.strip()
val = float(val.strip())
evalb_results[section][key] = val
eval_result = dict()
eval_result['name'] = self.name
eval_result['meta'] = dict()
eval_result['meta']['f1'] = evalb_results['All']['Bracketing FMeasure']
eval_result['meta']['recall'] = evalb_results['All']['Bracketing Recall']
eval_result['meta']['precision'] = evalb_results['All']['Bracketing Precision']
eval_result['meta']['exact_match'] = evalb_results['All']['Complete match']
return eval_result
constraint_class = NERComponent
# import collections
# import json
# import os
# import nltk
# from nltk.tree import Tree
# from nltk.treeprettyprinter import TreePrettyPrinter
# import numpy as np
# import torch
# from tqdm import tqdm
# from cky import ParsePredictor as CKY
# from experiment_logger import get_logger
# from evaluation_utils import BaseEvalFunc
# class ConstraintCKY(object):
# def __init__(self, net, word2idx, initial_scalar=1):
# super(ConstraintCKY, self).__init__()
# self.net = net
# self.idx2word = {v: k for k, v in word2idx.items()}
# self.initial_scalar = initial_scalar
# def predict(self, batch_map, return_components=False):
# batch = batch_map['sentences']
# example_ids = batch_map['example_ids']
# batch_span = [gt['ner_span'] for gt in batch_map['ground_truth']]
# batch_size = self.net.batch_size
# trees, components = self.parse_batch(batch,batch_span)
# out = []
# for i in range(batch_size):
# assert trees[i] is not None
# out.append(dict(example_id=example_ids[i], binary_tree=trees[i]))
# if return_components:
# return (out, components)
# return out
# def parse_batch(self, batch, batch_span, cell_loss=False, return_components=False):
# batch_size = self.net.batch_size
# length = self.net.length
# scalars = self.net.cache['inside_s_components'].copy()
# device = self.net.device
# dtype = torch.float32
# # Assign missing scalars
# for i in range(length):
# scalars[0][i] = torch.full((batch_size, 1), self.initial_scalar, dtype=dtype, device=device)
# leaves = [None for _ in range(batch_size)]
# for i in range(batch_size):
# batch_i = batch[i].tolist()
# leaves[i] = [self.idx2word[idx] for idx in batch_i]
# trees, components = self.batched_cky(scalars, leaves, batch_span)
# return trees, components
# def initial_chart(self,batch_span):
# batch_size = self.net.batch_size
# length = self.net.length
# device = self.net.device
# dtype = torch.float32
# # spans: [[[start,length],[]],[[],[],...],...]
# chart = [torch.full((length-i, batch_size), 1, dtype=dtype, device=device) for i in range(length)]
# for idx, spans in enumerate(batch_span):
# for span in spans:
# level = span[1]-1
# assert level>0
# pos = span[0]
# # cross = range(min(0,pos-level),max(length-level,pos+level))
# # for i in cross:
# # chart[level][min(0,pos-level):max(length-level,pos+level),idx] = float('-inf')
# chart[level][pos,idx] = 10000.0
# return chart
# def batched_cky(self, scalars, leaves, batch_span):
# batch_size = self.net.batch_size
# length = self.net.length
# device = self.net.device
# dtype = torch.float32
# # Chart.
# chart = self.initial_chart(batch_span)
# components = {}
# # Backpointers.
# bp = {}
# for ib in range(batch_size):
# bp[ib] = [[None] * (length - i) for i in range(length)]
# bp[ib][0] = [i for i in range(length)]
# for level in range(1, length):
# L = length - level
# N = level
# for pos in range(L):
# pairs, lps, rps, sps = [], [], [], []
# # Assumes that the bottom-left most leaf is in the first constituent.
# spbatch = scalars[level][pos]
# for idx in range(N):
# # (level, pos)
# l_level = idx
# l_pos = pos
# r_level = level-idx-1
# r_pos = pos+idx+1
# # assert l_level >= 0
# # assert l_pos >= 0
# # assert r_level >= 0
# # assert r_pos >= 0
# l = (l_level, l_pos)
# r = (r_level, r_pos)
# lp = chart[l_level][l_pos].view(-1, 1)
# rp = chart[r_level][r_pos].view(-1, 1)
# sp = spbatch[:, idx].view(-1, 1)
# lps.append(lp)
# rps.append(rp)
# sps.append(sp)
# pairs.append((l, r))
# lps, rps, sps = torch.cat(lps, 1), torch.cat(rps, 1), torch.cat(sps, 1)
# ps = lps + rps + sps
# components[(level, pos)] = ps
# argmax = ps.argmax(1).long()
# valmax = ps[range(batch_size), argmax]
# chart[level][pos, :] += valmax
# for i, ix in enumerate(argmax.tolist()):
# bp[i][level][pos] = pairs[ix]
# trees = []
# for i in range(batch_size):
# tree = self.follow_backpointers(bp[i], leaves[i], bp[i][-1][0])
# trees.append(tree)
# return trees, components
# def follow_backpointers(self, bp, words, pair):
# if isinstance(pair, int):
# return words[pair]
# l, r = pair
# lout = self.follow_backpointers(bp, words, bp[l[0]][l[1]])
# rout = self.follow_backpointers(bp, words, bp[r[0]][r[1]])
# return (lout, rout)
# def convert_to_nltk(tr, label='|'):
# def helper(tr):
# if not isinstance(tr, (list, tuple)):
# return '({} {})'.format(label, tr)
# nodes = []
# for x in tr:
# nodes.append(helper(x))
# return '({} {})'.format(label, ' '.join(nodes))
# return helper(tr)
# def example_f1(gt, pred):
# correct = len(gt.intersection(pred))
# if correct == 0:
# return 0., 0., 0.
# gt_total = len(gt)
# pred_total = len(pred)
# prec = float(correct) / pred_total
# recall = float(correct) / gt_total
# f1 = 2 * (prec * recall) / (prec + recall)
# return f1, prec, recall
# def per_sentence_f1(gold_tree, pred_tree):
# gold_tree = Tree.fromstring(gold_tree)
# gt_spans = set(tree_to_spans(gold_tree))
# pred_spans = set(tree_to_spans(pred_tree))
# return example_f1(gt_spans,pred_spans)
# def tree_to_spans(tree):
# spans = []
# def helper(tr, pos):
# if not isinstance(tr, (list, tuple)):
# size = 1
# return size
# elif isinstance(tr, Tree) and len(tr) == 1:
# size = 1
# return size
# size = 0
# for x in tr:
# xpos = pos + size
# xsize = helper(x, xpos)
# size += xsize
# spans.append((pos, size))
# return size
# helper(tree, 0)
# return spans
# def spans_to_tree(spans, tokens):
# length = len(tokens)
# # Add missing spans.
# span_set = set(spans)
# for pos in range(length):
# if pos not in span_set:
# spans.append((pos, 1))
# spans = sorted(spans, key=lambda x: (x[1], x[0]))
# pos_to_node = {}
# root_node = None
# for i, span in enumerate(spans):
# pos, size = span
# if i < length:
# assert i == pos
# node = (pos, size, tokens[i])
# pos_to_node[pos] = node
# continue
# node = (pos, size, [])
# for i_pos in range(pos, pos+size):
# child = pos_to_node[i_pos]
# c_pos, c_size = child[0], child[1]
# if i_pos == c_pos:
# node[2].append(child)
# pos_to_node[i_pos] = node
# def helper(node):
# pos, size, x = node
# if isinstance(x, str):
# return x
# return tuple([helper(xx) for xx in x])
# root_node = pos_to_node[0]
# tree = helper(root_node)
# return tree
# class TreesFromDiora(object):
# def __init__(self, diora, word2idx, outside, oracle):
# self.diora = diora
# self.word2idx = word2idx
# self.idx2word = {idx: w for w, idx in word2idx.items()}
# self.outside = outside
# self.oracle = oracle
# def to_spans(self, lst):
# return [(pos, level + 1) for level, pos in lst]
# def predict(self, batch_map):
# batch_size, length = batch_map['sentences'].shape
# example_ids = batch_map['example_ids']
# tscores = [0.0] * batch_size
# K = self.diora.K
# for i_b in range(batch_size):
# tokens = batch_map['ground_truth'][i_b]['tokens']
# root_level, root_pos = length - 1, 0
# spans = self.to_spans(self.diora.cache['inside_tree'][(i_b, 0)][(root_level, root_pos)])
# binary_tree = spans_to_tree(spans, tokens)
# other_trees = []
# yield dict(example_id=example_ids[i_b], binary_tree=binary_tree, binary_tree_score=tscores[i_b], other_trees=other_trees)
# class NERComponent(BaseEvalFunc):
# def init_defaults(self):
# self.agg_mode = 'sum'
# self.cky_mode = 'sum'
# self.ground_truth = None