-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrawdataset.py
142 lines (115 loc) · 4.99 KB
/
rawdataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# SPDX-FileCopyrightText: Copyright © Idiap Research Institute <contact@idiap.ch>
#
# SPDX-FileContributor: S. Pavankumar Dubagunta <pavankumar.dubagunta@idiap.ch>
# SPDX-FileContributor: Mathew Magimai Doss <mathew@idiap.ch>
# SPDX-FileContributor: Olivier Bornet <olivier.bornet@idiap.ch>
# SPDX-FileContributor: Olivier Canévet <olivier.canevet@idiap.ch>
# SPDX-FileContributor: Yannick Dayer <yannick.dayer@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-only
"""Provide an interface to load files from a dataset."""
import pickle
from pathlib import Path
import h5py
import keras
import numpy as np
class RawDataset(keras.utils.PyDataset):
"""Keras dataset to provide samples from a dataset."""
def __init__(self, featDir, batchSize=256, spliceSize=25, mode="train", **kwargs):
kwargs = {"workers": 1}
super().__init__(**kwargs)
self.featDir = Path(featDir)
self.batchSize = batchSize
self.spliceSize = spliceSize
self.mode = mode
self.stdFloor = 1e-3
self.context = (self.spliceSize - 1) // 2
infoFile = Path(self.featDir) / "info.npy"
self.info = np.load(infoFile, allow_pickle=True).item()
# Set attributes from info
self.numUtterances = self.info["numUtterances"]
self.numFeats = self.info["numFeats"]
self.numLabels = self.info["numLabels"]
self.numSplit = self.info["numSplit"]
self.inputFeatDim = self.info["inputFeatDim"] * self.spliceSize
self.outputFeatDim = self.info["outputFeatDim"]
# Compute number of steps
self.numSteps = -(-self.numFeats // self.batchSize)
self.numDone = 0
np.random.seed(512)
self.splitDataCounter = 0
self.x = np.empty((0, self.inputFeatDim), dtype=np.float32)
self.y = np.empty(0, dtype=np.int32)
self.batchPointer = 0
self.doUpdateSplit = True
def addContextNorm(self, feat):
"""Add context to get the window size."""
N = len(feat)
# Repeat feat[0], feat[-1] so that we get the same number of spliced feats
feat = np.concatenate(
[
np.tile(feat[0], (self.context, 1)),
feat,
np.tile(feat[-1], (self.context, 1)),
],
)
feat = np.lib.stride_tricks.as_strided(
feat,
strides=feat.strides,
shape=(N, self.inputFeatDim),
)
std = feat.std(axis=-1)
std[std < self.stdFloor] = self.stdFloor
return ((feat.T - feat.mean(axis=-1)) / std).T
def __len__(self):
"""Return the number of steps."""
return self.numSteps
# Retrieve a mini batch
def __getitem__(self, idx):
"""Return a batch at a specific index."""
self.numDone += 1
if self.mode == "train":
while self.batchPointer + self.batchSize >= len(self.x):
if not self.doUpdateSplit:
self.doUpdateSplit = True
break
self.splitDataCounter += 1
featFile = self.featDir / f"{self.splitDataCounter}.x.h5"
labelFile = self.featDir / f"{self.splitDataCounter}.y.h5"
with h5py.File(featFile, "r") as f:
featList = [self.addContextNorm(f[i][()]) for i in f]
x = np.vstack(featList)
with h5py.File(labelFile, "r") as f:
labelList = [f[i][()] for i in f]
y = np.hstack(labelList)
self.x = np.concatenate((self.x[self.batchPointer :], x))
self.y = np.concatenate((self.y[self.batchPointer :], y))
self.batchPointer = 0
# Shuffle data
randomInd = np.array(range(len(self.x)))
np.random.shuffle(randomInd)
self.x = self.x[randomInd]
self.y = self.y[randomInd]
if self.splitDataCounter == self.numSplit:
self.splitDataCounter = 0
self.doUpdateSplit = False
xMini = self.x[self.batchPointer : self.batchPointer + self.batchSize]
yMini = self.y[self.batchPointer : self.batchPointer + self.batchSize]
self.batchPointer += self.batchSize
return (xMini, yMini)
else: # Test mode # noqa: RET505
while True:
if self.doUpdateSplit:
self.splitDataCounter += 1
uflFile = self.featDir / f"{self.splitDataCounter}.pickle"
self.f = uflFile.open("rb")
self.doUpdateSplit = False
try:
utt, feat, lab = pickle.load(self.f)
return utt, self.addContextNorm(feat), lab
except EOFError:
self.f.close()
self.doUpdateSplit = True
if self.splitDataCounter == self.numSplit:
self.splitDataCounter = 0
raise StopIteration