-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
73 lines (57 loc) · 2.3 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# SPDX-FileCopyrightText: Copyright © Idiap Research Institute <contact@idiap.ch>
#
# SPDX-FileContributor: Olivier Canévet <olivier.canevet@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-only
"""Provide a command line interface for plotting results of an experiment."""
import argparse
from pathlib import Path
import matplotlib.pyplot as plt
import polars as pl
def prepare_figure():
"""Set up the axes, grid, and labels of the current figure."""
fig, axs = plt.subplots(2, 2, figsize=(10, 8))
axs[0, 0].set_ylabel("Training loss")
axs[0, 0].grid(visible=True, linestyle="--")
axs[0, 1].set_ylabel("Training accuracy")
axs[0, 1].grid(visible=True, linestyle="--")
axs[1, 0].set_ylabel("Validation loss")
axs[1, 0].grid(visible=True, linestyle="--")
axs[1, 1].set_ylabel("Validation accuracy")
axs[1, 1].grid(visible=True, linestyle="--")
return fig, axs
def main():
"""Create plots showing the performance of the classification for each epoch.
Each given directory must contain a log.dat file and an accuracy.dat file.
"""
parser = argparse.ArgumentParser(prog="rsclf-plot", description=main.__doc__)
parser.add_argument(
"--output-dir",
default=".",
help="Output directory for the plots file",
)
parser.add_argument("--extension", default="png", help="Image extension to save")
parser.add_argument(
"dirnames",
nargs="+",
help="Location of the Keras trained model",
)
args = parser.parse_args()
Path(args.output_dir).mkdir(exist_ok=True, parents=True)
fig, axs = prepare_figure()
for dirname in args.dirnames:
log_path = Path(dirname) / "log.dat"
if not Path(log_path).is_file():
raise FileNotFoundError(f"Expect file {log_path}")
acc_path = Path(dirname) / "accuracy.dat"
if not Path(acc_path).is_file():
raise FileNotFoundError(f"Expect file {acc_path}")
logs = pl.read_csv(log_path, has_header=True, separator=" ")
axs[0, 0].plot(logs["loss"])
axs[0, 1].plot(logs["accuracy"])
axs[1, 0].plot(logs["val_loss"])
axs[1, 1].plot(logs["val_accuracy"])
fig.savefig(Path(args.output_dir) / f"plot.{args.extension}", bbox_inches="tight")
plt.close(fig)
if __name__ == "__main__":
main()