-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsample_layers.C
92 lines (76 loc) · 2.2 KB
/
sample_layers.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/*
MyTRIM - a three dimensional binary collision Monte Carlo library.
Copyright (C) 2008-2018 Daniel Schwen <daniel@schwen.de>
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
#include "sample_layers.h"
#include <cmath>
using namespace MyTRIM_NS;
int
SampleLayers::lookupLayer(Point & pos)
{
unsigned int i;
Real d = 0.0;
for (i = 0; i < layerThickness.size(); ++i)
{
d += layerThickness[i];
if (pos(0) < d)
break;
}
if (i >= material.size())
i = material.size() - 1; // or 0, but we leave that to be determined by bc[] == CUT
return i;
}
MaterialBase *
SampleLayers::lookupMaterial(Point & pos)
{
return material[lookupLayer(pos)];
}
Real
SampleLayers::rangeMaterial(Point & pos, Point & dir)
{
// assume dir is a normalized vector
Real d = 0.0;
unsigned int i;
const Real unrestricted = 1.0e6;
// parallel to layer interfaces
if (dir(0) == 0.0)
return unrestricted;
Real epsilon = std::abs(1.0e-10 / dir(0));
// outside film
if (pos(0) < 0.0)
{
if (dir(0) < 0.0)
return unrestricted;
else
return -pos(0) / dir(0) + epsilon;
}
// find layer
for (i = 0; i < layerThickness.size(); ++i)
{
if (pos(0) >= d && pos(0) < d + layerThickness[i])
{
if (dir(0) < 0)
return (d - pos(0)) / dir(0) + epsilon;
else
return (d + layerThickness[i] - pos(0)) / dir(0) + epsilon;
}
d += layerThickness[i];
}
// not returned yet, means we are beyond the last layer
if (dir(0) > 0.0)
return unrestricted;
else
return (d - pos(0)) / dir(0) + epsilon;
}