diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 0000000..e69de29 diff --git a/404.html b/404.html new file mode 100644 index 0000000..dad88ea --- /dev/null +++ b/404.html @@ -0,0 +1,384 @@ + + + +
+ + + + + + + + + + + + + + +This is the API reference for the echoSMs package.
+Each type of model is contained in a separate Python class (with name ending in Model
), but with common calling signatures across all model classes, as defined in ScatterModelBase
. There are also classes to provide ready access to the benchmark models and reference model definitions. There are also utility functions.
+ Bases: ABC
Base class for a class that provides a scattering model.
+All scattering models should inherit from this class, have a name that +ends with 'Model', and provide initialisation and calculate_ts_single() functions.
+ + +Attributes:
+Name | +Type | +Description | +
---|---|---|
long_name |
+
+ str
+ |
+
+
+
+ The long name of the model. + |
+
short_name |
+
+ str
+ |
+
+
+
+ A short version of the model's long name, typically an ancronym. + |
+
analytical_type |
+
+ str
+ |
+
+
+
+ Whether the model implements an |
+
boundary_types |
+
+ list[str]
+ |
+
+
+
+ The types of boundary conditions that the model provides, e.g., 'fixed rigid', +'pressure release', 'fluid filled' + |
+
shapes |
+
+ list[str]
+ |
+
+
+
+ The target shapes that the model can represent. + |
+
max_ka |
+
+ float
+ |
+
+
+
+ An approximate maximum ka value that will result in accurate target strength results. Note +that ka is often not the only parameter that determines the accuracy of the model (e.g., +aspect ratio and incident angle can also affect the accuracy). + |
+
no_expand_parameters |
+
+ list[str]
+ |
+
+
+
+ The model parameters that are not expanded into Pandas DataFrame columns or
+Xarray DataArray coordinates. They will instead end up as a dict in the DataFrame or
+DataArray |
+
src/echosms/scattermodelbase.py
10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 40 + 41 + 42 + 43 + 44 + 45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + 58 + 59 + 60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 +150 +151 +152 +153 +154 +155 +156 +157 +158 +159 |
|
calculate_ts(data, expand=False, inplace=False, multiprocess=False)
+
+Calculate the target strength (TS) for many parameters.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
data |
+
+ Pandas DataFrame, Xarray DataArray or dict
+ |
+
+
+
+ Requirements for the different input data types are: +
|
+ + required + | +
multiprocess |
+
+ bool
+ |
+
+
+
+ Split the ts calculation across CPU cores. Multiprocessing is currently provided by
+mapply with little customisation. For more
+sophisticated uses it may be preferred to use a multiprocessing package of your choice
+directly on the |
+
+ False
+ |
+
expand |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
inplace |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
Returns:
+Type | +Description | +
---|---|
+ None, list[float], Series, or DataFrame
+ |
+
+
+
+ The return type and value are determined by the type of the input variable (
|
+
src/echosms/scattermodelbase.py
60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 |
|
calculate_ts_single()
+
+
+ abstractmethod
+
+
+Calculate the TS for one parameter set.
+ +src/echosms/scattermodelbase.py
157 +158 +159 |
|
+ Bases: ScatterModelBase
Modal series deformed cylinder model (DCM).
+This class contains methods to calculate acoustic scatter from finite straight cylinders with +various boundary conditions.
+ +src/echosms/dcmmodel.py
11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 40 + 41 + 42 + 43 + 44 + 45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + 58 + 59 + 60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 |
|
calculate_ts(data, expand=False, inplace=False, multiprocess=False)
+
+Calculate the target strength (TS) for many parameters.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
data |
+
+ Pandas DataFrame, Xarray DataArray or dict
+ |
+
+
+
+ Requirements for the different input data types are: +
|
+ + required + | +
multiprocess |
+
+ bool
+ |
+
+
+
+ Split the ts calculation across CPU cores. Multiprocessing is currently provided by
+mapply with little customisation. For more
+sophisticated uses it may be preferred to use a multiprocessing package of your choice
+directly on the |
+
+ False
+ |
+
expand |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
inplace |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
Returns:
+Type | +Description | +
---|---|
+ None, list[float], Series, or DataFrame
+ |
+
+
+
+ The return type and value are determined by the type of the input variable (
|
+
src/echosms/scattermodelbase.py
60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 |
|
calculate_ts_single(medium_c, medium_rho, a, b, theta, f, boundary_type, target_c=None, target_rho=None, **kwargs)
+
+Calculate the scatter from a finite cylinder using the modal series deformed cylinder model.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
medium_c |
+
+ float
+ |
+
+
+
+ Sound speed in the fluid medium surrounding the target [m/s]. + |
+ + required + | +
medium_rho |
+
+ float
+ |
+
+
+
+ Density of the fluid medium surrounding the target [kg/m³]. + |
+ + required + | +
a |
+
+ float
+ |
+
+
+
+ Radius of the cylinderical target [m]. + |
+ + required + | +
b |
+
+ float
+ |
+
+
+
+ Length of the cylinderical target [m]. + |
+ + required + | +
theta |
+
+ float
+ |
+
+
+
+ Pitch angle to calculate the scattering at [°]. An angle of 0 is head on, +90 is dorsal, and 180 is tail on. + |
+ + required + | +
f |
+
+ float
+ |
+
+
+
+ Frequency to calculate the scattering at [Hz]. + |
+ + required + | +
boundary_type |
+
+ str
+ |
+
+
+
+ The model type. Supported model types are given in the |
+ + required + | +
target_c |
+
+ float
+ |
+
+
+
+ Sound speed in the fluid inside the sphere [m/s].
+Only required for |
+
+ None
+ |
+
target_rho |
+
+ float
+ |
+
+
+
+ Density of the fluid inside the sphere [kg/m³].
+Only required for |
+
+ None
+ |
+
Returns:
+Type | +Description | +
---|---|
+ float
+ |
+
+
+
+ The target strength (re 1 m²) of the target [dB]. + |
+
The class implements the code in Section B.1 of Ject et al. (2015).
+Jech, J.M., Horne, J.K., Chu, D., Demer, D.A., Francis, D.T.I., Gorska, N., Jones, B., +Lavery, A.C., Stanton, T.K., Macaulay, G.J., Reeder, D.B., Sawada, K., 2015. +Comparisons among ten models of acoustic backscattering used in aquatic ecosystem +research. Journal of the Acoustical Society of America 138, 3742–3764. +https://doi.org/10.1121/1.4937607
+src/echosms/dcmmodel.py
27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 40 + 41 + 42 + 43 + 44 + 45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + 58 + 59 + 60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 |
|
There are several models that use the distorted-wave Born approximation, documented below:
+
+ Bases: ScatterModelBase
Distorted-wave Born approximation scattering model.
+ + +The DWBA model is not yet functional.
+src/echosms/dwbamodel.py
6 + 7 + 8 + 9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 |
|
calculate_ts(data, expand=False, inplace=False, multiprocess=False)
+
+Calculate the target strength (TS) for many parameters.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
data |
+
+ Pandas DataFrame, Xarray DataArray or dict
+ |
+
+
+
+ Requirements for the different input data types are: +
|
+ + required + | +
multiprocess |
+
+ bool
+ |
+
+
+
+ Split the ts calculation across CPU cores. Multiprocessing is currently provided by
+mapply with little customisation. For more
+sophisticated uses it may be preferred to use a multiprocessing package of your choice
+directly on the |
+
+ False
+ |
+
expand |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
inplace |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
Returns:
+Type | +Description | +
---|---|
+ None, list[float], Series, or DataFrame
+ |
+
+
+
+ The return type and value are determined by the type of the input variable (
|
+
src/echosms/scattermodelbase.py
60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 |
|
calculate_ts_single(theta, phi, f, target_rho, target_c)
+
+Distorted-wave Born approximation scattering model.
+Implements the distorted-wave Born approximation +model for calculating the acoustic backscatter from weakly scattering bodies.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
theta |
+
+ float
+ |
+
+
+
+ Incident wave pitch angle [°]. + |
+ + required + | +
phi |
+
+ float
+ |
+
+
+
+ Incident wave roll angle [°]. + |
+ + required + | +
f |
+
+ float
+ |
+
+
+
+ Frequency to run the model at [Hz] + |
+ + required + | +
target_rho |
+
+ iterable[float]
+ |
+
+
+
+ Densities of each material. Must have at least the same number of entries as unique
+integers in |
+ + required + | +
target_c |
+
+ iterable[float]
+ |
+
+
+
+ Sound speed of each material. Must have at least the same number of entries as unique
+integers in |
+ + required + | +
Returns:
+Type | +Description | +
---|---|
+ float
+ |
+
+
+
+ The target strength (re 1 m²) [dB] of the target. + |
+
This class implements the method presented in Chu et al. (1993).
+Chu, D., Foote, K. G., & Stanton, T. K. (1993). Further analysis of target strength +measurements of Antarctic krill at 38 and 120 kHz: Comparison with deformed cylinder +model and inference or orientation distribution. The Journal of the Acoustical Society +of America, 93(5), 2985–2988. https://doi.org/10.1121/1.405818
+src/echosms/dwbamodel.py
23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 |
|
+ Bases: ScatterModelBase
Phase-tracking distorted-wave Born approximation scattering model.
+ +src/echosms/ptdwbamodel.py
8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 40 + 41 + 42 + 43 + 44 + 45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + 58 + 59 + 60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 +150 +151 +152 +153 +154 +155 +156 +157 +158 +159 +160 +161 +162 +163 |
|
calculate_ts(data, expand=False, inplace=False, multiprocess=False)
+
+Calculate the target strength (TS) for many parameters.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
data |
+
+ Pandas DataFrame, Xarray DataArray or dict
+ |
+
+
+
+ Requirements for the different input data types are: +
|
+ + required + | +
multiprocess |
+
+ bool
+ |
+
+
+
+ Split the ts calculation across CPU cores. Multiprocessing is currently provided by
+mapply with little customisation. For more
+sophisticated uses it may be preferred to use a multiprocessing package of your choice
+directly on the |
+
+ False
+ |
+
expand |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
inplace |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
Returns:
+Type | +Description | +
---|---|
+ None, list[float], Series, or DataFrame
+ |
+
+
+
+ The return type and value are determined by the type of the input variable (
|
+
src/echosms/scattermodelbase.py
60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 |
|
calculate_ts_single(volume, theta, phi, f, voxel_size, rho, c, **kwargs)
+
+Phase-tracking distorted-wave Born approximation scattering model.
+Implements the phase-tracking distorted-wave Born approximation +model for calculating the acoustic backscatter from weakly scattering bodies.
+ + +Input parameters theta
, phi
, and the orientation of volume
do not currently follow the
+echoSMs coordinate system.
Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
volume |
+
+ Numpy ndarray[int]
+ |
+
+
+
+ The object to be modelled as a 3D volume of voxels. Array contents should be 0
+for the surrounding medium, then increasing by 1 for each additional material
+type (i.e., 1, 2, 3, etc).
|
+ + required + | +
theta |
+
+ float
+ |
+
+
+
+ Incident wave pitch angle [°]. + |
+ + required + | +
phi |
+
+ float
+ |
+
+
+
+ Incident wave roll angle [°]. + |
+ + required + | +
f |
+
+ float
+ |
+
+
+
+ Frequency to run the model at [Hz] + |
+ + required + | +
voxel_size |
+
+ iterable[float]
+ |
+
+
+
+ The size of the voxels in |
+ + required + | +
rho |
+
+ iterable[float]
+ |
+
+
+
+ Densities of each material. Must have at least the same number of entries as unique
+integers in |
+ + required + | +
c |
+
+ iterable[float]
+ |
+
+
+
+ Sound speed of each material. Must have at least the same number of entries as unique
+integers in |
+ + required + | +
Returns:
+Type | +Description | +
---|---|
+ float
+ |
+
+
+
+ The target strength (re 1 m²) [dB] of the target. + |
+
This class implements the method presented in Jones et. al. (2009). The code is +based closely on the Matlab code in Jones (2006).
+Jones, B. A. (2006). Acoustic scattering of broadband echolocation signals +from prey of Blainville's beaked whales: Modeling and analysis. Master of Science, +Massachusetts Institute of Technology. https://doi.org/10.1575/1912/1283
+Jones, B. A., Lavery, A. C., & Stanton, T. K. (2009). Use of the distorted +wave Born approximation to predict scattering by inhomogeneous objects: +Application to squid. The Journal of the Acoustical Society of America, +125(1), 73-88. https://doi.org/10.1121/1.3021298
+src/echosms/ptdwbamodel.py
21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 40 + 41 + 42 + 43 + 44 + 45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + 58 + 59 + 60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 +150 +151 +152 +153 +154 +155 +156 +157 +158 +159 +160 +161 +162 +163 |
|
+ Bases: ScatterModelBase
Stochastic distorted-wave Born approximation scattering model.
+ + +The SDWBA model is not yet functional.
+src/echosms/sdwbamodel.py
6 + 7 + 8 + 9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 |
|
calculate_ts(data, expand=False, inplace=False, multiprocess=False)
+
+Calculate the target strength (TS) for many parameters.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
data |
+
+ Pandas DataFrame, Xarray DataArray or dict
+ |
+
+
+
+ Requirements for the different input data types are: +
|
+ + required + | +
multiprocess |
+
+ bool
+ |
+
+
+
+ Split the ts calculation across CPU cores. Multiprocessing is currently provided by
+mapply with little customisation. For more
+sophisticated uses it may be preferred to use a multiprocessing package of your choice
+directly on the |
+
+ False
+ |
+
expand |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
inplace |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
Returns:
+Type | +Description | +
---|---|
+ None, list[float], Series, or DataFrame
+ |
+
+
+
+ The return type and value are determined by the type of the input variable (
|
+
src/echosms/scattermodelbase.py
60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 |
|
calculate_ts_single(theta, phi, f, target_rho, target_c)
+
+Stochastic distorted-wave Born approximation scattering model.
+Implements the stochastic distorted-wave Born approximation +model for calculating the acoustic backscatter from weakly scattering bodies.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
theta |
+
+ float
+ |
+
+
+
+ Incident wave pitch angle [°]. + |
+ + required + | +
phi |
+
+ float
+ |
+
+
+
+ Incident wave roll angle [°]. + |
+ + required + | +
f |
+
+ float
+ |
+
+
+
+ Frequency to run the model at [Hz] + |
+ + required + | +
target_rho |
+
+ iterable[float]
+ |
+
+
+
+ Densities of each material. Must have at least the same number of entries as unique
+integers in |
+ + required + | +
target_c |
+
+ iterable[float]
+ |
+
+
+
+ Sound speed of each material. Must have at least the same number of entries as unique
+integers in |
+ + required + | +
Returns:
+Type | +Description | +
---|---|
+ float
+ |
+
+
+
+ The target strength (re 1 m²) [dB] of the target. + |
+
This class implements the method presented in Demer & Conti (2003), Demer & Conti (2004), +and Conti & Demer (2006).
+Demer, D. A., & Conti, S. G. (2003). Reconciling theoretical versus empirical target +strengths of krill: Effects of phase variability on the distorted-wave Born approximation. +ICES Journal of Marine Science, 60, 429-434. +https://doi.org/10.1016/S1054-3139(03)00002-X
+Demer, D. A., & Conti, S. G. (2004). Reconciling theoretical versus empirical +target strengths of krill: Effects of phase variability on the distorted-wave Born +approximation. ICES Journal of Marine Science, 61(1), 157-158. +https://doi.org/10.1016/j.icesjms.2003.12.003
+Conti, S. G., & Demer, D. A. (2006). Improved parameterization of the SDWBA for estimating +krill target strength. ICES Journal of Marine Science, 63(5), 928-935. +https://doi.org/10.1016/j.icesjms.2006.02.007
+src/echosms/sdwbamodel.py
23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 |
|
+ Bases: ScatterModelBase
Elastic sphere (ES) scattering model.
+This class calculates acoustic backscatter from elastic spheres.
+ +src/echosms/esmodel.py
12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 |
|
calculate_ts(data, expand=False, inplace=False, multiprocess=False)
+
+Calculate the target strength (TS) for many parameters.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
data |
+
+ Pandas DataFrame, Xarray DataArray or dict
+ |
+
+
+
+ Requirements for the different input data types are: +
|
+ + required + | +
multiprocess |
+
+ bool
+ |
+
+
+
+ Split the ts calculation across CPU cores. Multiprocessing is currently provided by
+mapply with little customisation. For more
+sophisticated uses it may be preferred to use a multiprocessing package of your choice
+directly on the |
+
+ False
+ |
+
expand |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
inplace |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
Returns:
+Type | +Description | +
---|---|
+ None, list[float], Series, or DataFrame
+ |
+
+
+
+ The return type and value are determined by the type of the input variable (
|
+
src/echosms/scattermodelbase.py
60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 |
|
calculate_ts_single(medium_c, medium_rho, a, f, target_longitudinal_c, target_transverse_c, target_rho, **kwargs)
+
+Calculate the backscatter from an elastic sphere for one set of parameters.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
medium_c |
+
+ float
+ |
+
+
+
+ Sound speed in the fluid medium surrounding the sphere [m/s]. + |
+ + required + | +
medium_rho |
+
+ float
+ |
+
+
+
+ Density of the fluid medium surrounding the sphere [kg/m³]. + |
+ + required + | +
a |
+
+ float
+ |
+
+
+
+ Radius of the sphere [m]. + |
+ + required + | +
f |
+
+ float
+ |
+
+
+
+ Frequency to calculate the scattering at [Hz]. + |
+ + required + | +
target_longitudinal_c |
+
+ float
+ |
+
+
+
+ Longitudinal sound speed in the material inside the sphere [m/s]. + |
+ + required + | +
target_transverse_c |
+
+ float
+ |
+
+
+
+ Transverse sound speed in the material inside the sphere [m/s]. + |
+ + required + | +
target_rho |
+
+ float
+ |
+
+
+
+ Density of the material inside the sphere [kg/m³]. + |
+ + required + | +
Returns:
+Type | +Description | +
---|---|
+ float
+ |
+
+
+
+ The target strength (re 1 m²) of the sphere [dB]. + |
+
The class implements the code in MacLennan (1981).
+MacLennan, D. N. (1981). The Theory of Solid Spheres as Sonar Calibration Targets +Scottish Fisheries Research Report Number 22. Department of Agriculture and Fisheries +for Scotland.
+src/echosms/esmodel.py
27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 |
|
+ Bases: ScatterModelBase
Modal series solution (MSS) scattering model.
+This class calculates acoustic scatter from spheres and shells with various
+boundary conditions, as listed in the boundary_types
class attribute.
src/echosms/mssmodel.py
12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 40 + 41 + 42 + 43 + 44 + 45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + 58 + 59 + 60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 +150 +151 +152 +153 +154 +155 +156 +157 +158 +159 +160 +161 +162 +163 +164 +165 +166 +167 +168 +169 +170 +171 +172 +173 +174 +175 +176 +177 +178 +179 +180 +181 +182 +183 +184 +185 +186 +187 +188 +189 |
|
calculate_ts(data, expand=False, inplace=False, multiprocess=False)
+
+Calculate the target strength (TS) for many parameters.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
data |
+
+ Pandas DataFrame, Xarray DataArray or dict
+ |
+
+
+
+ Requirements for the different input data types are: +
|
+ + required + | +
multiprocess |
+
+ bool
+ |
+
+
+
+ Split the ts calculation across CPU cores. Multiprocessing is currently provided by
+mapply with little customisation. For more
+sophisticated uses it may be preferred to use a multiprocessing package of your choice
+directly on the |
+
+ False
+ |
+
expand |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
inplace |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
Returns:
+Type | +Description | +
---|---|
+ None, list[float], Series, or DataFrame
+ |
+
+
+
+ The return type and value are determined by the type of the input variable (
|
+
src/echosms/scattermodelbase.py
60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 |
|
calculate_ts_single(medium_c, medium_rho, a, theta, f, boundary_type, target_c=None, target_rho=None, shell_c=None, shell_rho=None, shell_thickness=None, **kwargs)
+
+Calculate the scatter using the mss model for one set of parameters.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
medium_c |
+
+ float
+ |
+
+
+
+ Sound speed in the fluid medium surrounding the target [m/s]. + |
+ + required + | +
medium_rho |
+
+ float
+ |
+
+
+
+ Density of the fluid medium surrounding the target [kg/m³]. + |
+ + required + | +
a |
+
+ float
+ |
+
+
+
+ Radius of the spherical target [m]. + |
+ + required + | +
theta |
+
+ float
+ |
+
+
+
+ Pitch angle to calculate the scattering at [°]. An angle of 0 is head on, +90 is dorsal, and 180 is tail on. + |
+ + required + | +
f |
+
+ float
+ |
+
+
+
+ Frequency to calculate the scattering at [Hz]. + |
+ + required + | +
boundary_type |
+
+ str
+ |
+
+
+
+ The boundary type. Supported types are given in the |
+ + required + | +
target_c |
+
+ float
+ |
+
+
+
+ Sound speed in the fluid inside the sphere [m/s].
+Only required for |
+
+ None
+ |
+
target_rho |
+
+ float
+ |
+
+
+
+ Density of the fluid inside the sphere [kg/m³].
+Only required for |
+
+ None
+ |
+
shell_c |
+
+ float
+ |
+
+
+
+ Sound speed in the spherical shell [m/s].
+Only required for |
+
+ None
+ |
+
shell_rho |
+
+ float
+ |
+
+
+
+ Density in the spherical shell [kg/m³].
+Only required for |
+
+ None
+ |
+
shell_thickness |
+
+ float
+ |
+
+
+
+ Thickness of the spherical shell [m]. This value is subtracted from |
+
+ None
+ |
+
Returns:
+Type | +Description | +
---|---|
+ float
+ |
+
+
+
+ The target strength (re 1 m²) of the target [dB]. + |
+
The class implements the code in Section A.1 of Jech et al. (2015).
+Jech, J.M., Horne, J.K., Chu, D., Demer, D.A., Francis, D.T.I., Gorska, N., +Jones, B., Lavery, A.C., Stanton, T.K., Macaulay, G.J., Reeder, D.B., Sawada, K., 2015. +Comparisons among ten models of acoustic backscattering used in aquatic ecosystem +research. Journal of the Acoustical Society of America 138, 3742–3764. +https://doi.org/10.1121/1.4937607
+src/echosms/mssmodel.py
30 + 31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 40 + 41 + 42 + 43 + 44 + 45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + 58 + 59 + 60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 |
|
+ Bases: ScatterModelBase
Prolate spheroidal modal series (PSMS) scattering model.
+ +src/echosms/psmsmodel.py
8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 40 + 41 + 42 + 43 + 44 + 45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + 58 + 59 + 60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 +150 +151 +152 +153 +154 +155 +156 +157 +158 +159 +160 +161 +162 +163 +164 +165 +166 +167 +168 +169 +170 +171 +172 +173 +174 +175 +176 +177 +178 +179 +180 +181 +182 +183 +184 +185 +186 +187 +188 +189 +190 +191 +192 +193 +194 +195 +196 +197 +198 +199 +200 |
|
aswfa2(eta, m, n, h0)
+
+
+ staticmethod
+
+
+Need eta argument to be first for use in quad().
+ +src/echosms/psmsmodel.py
196 +197 +198 +199 +200 |
|
calculate_ts(data, expand=False, inplace=False, multiprocess=False)
+
+Calculate the target strength (TS) for many parameters.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
data |
+
+ Pandas DataFrame, Xarray DataArray or dict
+ |
+
+
+
+ Requirements for the different input data types are: +
|
+ + required + | +
multiprocess |
+
+ bool
+ |
+
+
+
+ Split the ts calculation across CPU cores. Multiprocessing is currently provided by
+mapply with little customisation. For more
+sophisticated uses it may be preferred to use a multiprocessing package of your choice
+directly on the |
+
+ False
+ |
+
expand |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
inplace |
+
+ bool
+ |
+
+
+
+ Only applicable if |
+
+ False
+ |
+
Returns:
+Type | +Description | +
---|---|
+ None, list[float], Series, or DataFrame
+ |
+
+
+
+ The return type and value are determined by the type of the input variable (
|
+
src/echosms/scattermodelbase.py
60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 |
|
calculate_ts_single(medium_c, medium_rho, a, b, theta, f, boundary_type, target_c=None, target_rho=None)
+
+Prolate spheroid modal series (PSMS) solution model.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
medium_c |
+
+ float
+ |
+
+
+
+ Sound speed in the fluid medium surrounding the target [m/s]. + |
+ + required + | +
medium_rho |
+
+ float
+ |
+
+
+
+ Density of the fluid medium surrounding the target [kg/m³]. + |
+ + required + | +
a |
+
+ float
+ |
+
+
+
+ Prolate spheroid major axis radius [m]. + |
+ + required + | +
b |
+
+ float
+ |
+
+
+
+ Prolate spheroid minor axis radius [m]. + |
+ + required + | +
theta |
+
+ float
+ |
+
+
+
+ Pitch angle to calculate the scattering at [°]. An angle of 0 is head on, +90 is dorsal, and 180 is tail on. + |
+ + required + | +
f |
+
+ float
+ |
+
+
+
+ Frequency to calculate the scattering at [Hz]. + |
+ + required + | +
boundary_type |
+
+ str
+ |
+
+
+
+ The model type. Supported model types are given in the |
+ + required + | +
target_c |
+
+ float
+ |
+
+
+
+ Sound speed in the fluid inside the target [m/s].
+Only required for |
+
+ None
+ |
+
target_rho |
+
+ float
+ |
+
+
+
+ Density of the fluid inside the target [kg/m³].
+Only required for |
+
+ None
+ |
+
Returns:
+Type | +Description | +
---|---|
+ float
+ |
+
+
+
+ The target strength (re 1 m²) of the target [dB]. + |
+
The backscattered target strength of a pressure release or fluid-filled prolate spheroid +is calculated using the PSMS method of Furusawa (1988) and corrections in +Furusawa et al. (1994).
+Furusawa, M. (1988). "Prolate spheroidal models for predicting general + trends of fish target strength," J. Acoust. Soc. Jpn. 9, 13-24. +Furusawa, M., Miyanohana, Y., Ariji, M., and Sawada, Y. (1994). + “Prediction of krill target strength by liquid prolate spheroid + model,” Fish. Sci., 60, 261–265.
+src/echosms/psmsmodel.py
20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 40 + 41 + 42 + 43 + 44 + 45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + 58 + 59 + 60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 +150 +151 +152 +153 +154 +155 +156 +157 +158 +159 +160 +161 +162 +163 +164 +165 +166 +167 +168 +169 +170 +171 +172 +173 +174 +175 +176 +177 +178 +179 +180 +181 +182 +183 +184 +185 +186 +187 +188 +189 +190 +191 +192 +193 +194 |
|
Provide access to reference scattering model parameters.
+Reference models are the models and parameters defined in Jech et al. (2015). +The parameters are stored in a TOML-formatted file in the echoSMs repository +and this class provides easy access to the data in that file. Additional reference +models may be defined in the future and added to the TOML file.
+ + +Attributes:
+Name | +Type | +Description | +
---|---|---|
definitions |
+
+ dict
+ |
+
+
+
+ A dict representation of the |
+
Raises:
+Type | +Description | +
---|---|
+ TOMLDecodeError
+ |
+
+
+
+ If the |
+
+ KeyError
+ |
+
+
+
+ If the |
+
Jech, J.M., Horne, J.K., Chu, D., Demer, D.A., Francis, D.T.I., Gorska, N., Jones, B., +Lavery, A.C., Stanton, T.K., Macaulay, G.J., Reeder, D.B., Sawada, K., 2015. +Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research. +Journal of the Acoustical Society of America 138, 3742–3764. https://doi.org/10.1121/1.4937607
+src/echosms/referencemodels.py
13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 40 + 41 + 42 + 43 + 44 + 45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + 58 + 59 + 60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 + 81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 |
|
names()
+
+Names of all model definitions.
+ + +Returns:
+Type | +Description | +
---|---|
+ iterable of str
+ |
+
+
+
+ All model names in the |
+
src/echosms/referencemodels.py
68 +69 +70 +71 +72 +73 +74 +75 +76 |
|
parameters(name)
+
+Model parameters for a particular model.
+Model parameters are a subset of the model specification where the metadata items have +been removed.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
name |
+
+ str
+ |
+
+
+
+ The name of a model in the |
+ + required + | +
Returns:
+Type | +Description | +
---|---|
+ dict
+ |
+
+
+
+ The model parameters for the requested model or an empty set if no model with that name. + |
+
src/echosms/referencemodels.py
98 + 99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 |
|
specification(name)
+
+Model defintions for a particular model.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
name |
+
+ str
+ |
+
+
+
+ The name of a model in the |
+ + required + | +
Returns:
+Type | +Description | +
---|---|
+ dict
+ |
+
+
+
+ The model definitions for the requested model or an empty set if no model +with that name. + |
+
src/echosms/referencemodels.py
78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 |
|
Convenient interface to the benchmark dataset.
+This dataset contains the TS results from Jech et al. (2015).
+ + +Attributes:
+Name | +Type | +Description | +
---|---|---|
angle_dataset |
+
+ Pandas DataFrame
+ |
+
+
+
+ The angle dataset from the benchmark model runs. + |
+
freq_dataset |
+
+ Pandas DataFrame
+ |
+
+
+
+ The frequency dataset from the benchmark model runs. + |
+
Jech, J.M., Horne, J.K., Chu, D., Demer, D.A., Francis, D.T.I., Gorska, N., Jones, B., +Lavery, A.C., Stanton, T.K., Macaulay, G.J., Reeder, D.B., Sawada, K., 2015. +Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research. +Journal of the Acoustical Society of America 138, 3742–3764. https://doi.org/10.1121/1.4937607
+src/echosms/benchmarkdata.py
7 + 8 + 9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 |
|
Miscellaneous utility functions.
+ + + +
as_dataarray(params, no_expand=[])
+
+Convert model parameters from dict form to a Xarray DataArray.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
params |
+
+ dict
+ |
+
+
+
+ The model parameters. + |
+ + required + | +
no_expand |
+
+ list
+ |
+
+
+
+ Key values of the non-expandable model parameters in |
+
+ []
+ |
+
Returns:
+Type | +Description | +
---|---|
+ DataArray
+ |
+
+
+
+ Returns a multi-dimensional DataArray generated from the Cartesian product of all
+expandable items in the input dict. Non-expandable items are added to the DataArray
+attrs property. Expandable items are those that can be sensibly expanded into
+DataArray coordinates. Not all models have non-expandable items.
+The array is named |
+
src/echosms/utils.py
252 +253 +254 +255 +256 +257 +258 +259 +260 +261 +262 +263 +264 +265 +266 +267 +268 +269 +270 +271 +272 +273 +274 +275 +276 +277 +278 +279 +280 +281 +282 +283 +284 |
|
as_dataframe(params, no_expand=[])
+
+Convert model parameters from dict form to a Pandas DataFrame.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
params |
+
+ dict
+ |
+
+
+
+ The model parameters. + |
+ + required + | +
no_expand |
+
+ list
+ |
+
+
+
+ Key values of the non-expandable model parameters in |
+
+ []
+ |
+
Returns:
+Type | +Description | +
---|---|
+ DataFrame
+ |
+
+
+
+ Returns a Pandas DataFrame generated from the Cartesian product of all expandable +items in the input dict. DataFrame column names are obtained from the dict keys. +Non-expandable items are added to the DataFrame attrs property. Expandable items are +those that can be sensibly expanded into DataFrame columns. Not all models have +non-expandable items. + |
+
src/echosms/utils.py
287 +288 +289 +290 +291 +292 +293 +294 +295 +296 +297 +298 +299 +300 +301 +302 +303 +304 +305 +306 +307 +308 +309 +310 +311 +312 +313 +314 +315 +316 +317 |
|
eta(m)
+
+Neumann number.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
m |
+
+ int
+ |
+
+
+
+ The input integer. + |
+ + required + | +
Returns:
+Type | +Description | +
---|---|
+ int
+ |
+
+
+
+ The Neumann number. + |
+
src/echosms/utils.py
10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 |
|
h1(n, z, derivative=False)
+
+Spherical Hankel function of the first kind or its' derivative.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
n |
+
+ int
+ |
+
+
+
+ Order (n ≥ 0). + |
+ + required + | +
z |
+
+ float
+ |
+
+
+
+ Argument of the Hankel function. + |
+ + required + | +
derivative |
+ + | +
+
+
+ if True, the value of the derivative (rather than the function itself) is returned. + |
+
+ False
+ |
+
Returns:
+Type | +Description | +
---|---|
+ complex
+ |
+
+
+
+ Value of the spherical Hankel function + |
+
Raises:
+Type | +Description | +
---|---|
+ ValueError
+ |
+
+
+
+ For negative n values. + |
+
The value of the Hankel function is calculated from spherical Bessel functions [1].
+The derivative is computed from spherical Hankel functions [2].
+src/echosms/utils.py
47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 |
|
prolate_swf(m, lnum, c, xi, eta, norm=False)
+
+Calculate prolate spheroidal wave function values.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
m |
+
+ int
+ |
+
+
+
+ Order m + |
+ + required + | +
lnum |
+
+ int
+ |
+
+
+
+ Number of values to calculate for degree l (ell). Will provide +values of l = m, m+1, m+2, ..., m+lnum-1 + |
+ + required + | +
c |
+
+ float
+ |
+
+
+
+ Size parameter, equal to kd/2 where k is the wavenumber and d the +prolate spheroid interfocal distance + |
+ + required + | +
xi |
+
+ float
+ |
+
+
+
+ Radial coordinate value to calculate the prolate radial function at [°]. + |
+ + required + | +
eta |
+
+ iterable[float]
+ |
+
+
+
+ Values of angular coordinate eta for which the prolate spheroidal angular +function will be calculated. + |
+ + required + | +
norm |
+ + | +
+
+
+ If |
+
+ False
+ |
+
angular |
+
+ bool
+ |
+
+
+
+ Whether to return values for the angular functions. + |
+ + required + | +
radial |
+
+ bool
+ |
+
+
+
+ Whether to return values for the radial functions. + |
+ + required + | +
angular_derivative |
+
+ bool
+ |
+
+
+
+ Whether to return values for the derivative of the angular functions. + |
+ + required + | +
radial_derivative |
+
+ bool
+ |
+
+
+
+ Whether to return values for the derivative of the radial functions. + |
+ + required + | +
Returns:
+Name | Type | +Description | +
---|---|---|
R1 |
+ ndarray[float]
+ |
+
+
+
+ Radial prolate spheroidal values of the first kind for all values of l (ell). + |
+
R2 |
+ ndarray[float]
+ |
+
+
+
+ Radial prolate spheroidal values of the second kind for all values of l (ell). + |
+
R1d |
+ ndarray[float]
+ |
+
+
+
+ Derivative of the radial prolate spheroidal values of the first kind for all +values of l (ell). + |
+
R2d |
+ ndarray[float]
+ |
+
+
+
+ Derivative of the radial prolate spheroidal values of the second kind for all +values of l (ell). + |
+
S1 |
+ ndarray[float]
+ |
+
+
+
+ Angular prolate spheroidal values of the first kind for all values of l (ell) +and eta. + |
+
S1d |
+ ndarray[float]
+ |
+
+
+
+ Derivative of the angular prolate spheroidal values of the first kind for +all values of l (ell) and eta. + |
+
Racc |
+ ndarray[int]
+ |
+
+
+
+ Estimated accuracy of the radial values (number of significant digits) for all +values of l (ell). + |
+
Sacc |
+ ndarray[int]
+ |
+
+
+
+ Estimated accuracy of the angular values (number of significant digits) for +all values of l (ell) and eta. + |
+
Raises:
+Type | +Description | +
---|---|
+ ValueError
+ |
+
+
+
+ If any input arguments are invalid. + |
+
This method encapsulates the prolate spheroidal wave function code for non complex
+arguments (van Buren & Boisvert, 2002, and van Buren & Boisvert, 2024), available on
+github. This code is in Fortran90
+and was interfaced to Python using numpy.f2py
then wrapped with the current method to
+provide a convenient interface for use in the PSMSModel
class.
Van Buren, A. L., & Boisvert, J. E. (2002). Accurate calculation of prolate spheroidal +radial functions of the first kind and their first derivatives. Quarterly of Applied +Mathematics, 60(3), 589-599. https://doi.org/10.1090/qam/1914443
+Van Buren, A. L., & Boisvert, J. E. (2004). Improved Calculation of Prolate Spheroidal +Radial Functions of the Second Kind and Their First Derivatives. Quarterly of Applied +Mathematics, 62(3), 493-507. https://doi.org/10.1090/qam/2086042
+src/echosms/utils.py
108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 +150 +151 +152 +153 +154 +155 +156 +157 +158 +159 +160 +161 +162 +163 +164 +165 +166 +167 +168 +169 +170 +171 +172 +173 +174 +175 +176 +177 +178 +179 +180 +181 +182 +183 +184 +185 +186 +187 +188 +189 +190 +191 +192 +193 +194 +195 +196 +197 +198 +199 +200 +201 +202 +203 +204 +205 +206 +207 +208 +209 +210 +211 +212 +213 +214 +215 +216 +217 +218 +219 +220 +221 +222 +223 +224 +225 +226 +227 |
|
spherical_jnpp(n, z)
+
+Second derivative of the spherical Bessel function.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
n |
+
+ int
+ |
+
+
+
+ Order (n ≥ 0) + |
+ + required + | +
z |
+
+ float
+ |
+
+
+
+ Argument of the Bessel function. + |
+ + required + | +
Returns:
+Type | +Description | +
---|---|
+ float
+ |
+
+
+
+ The second derivative of the spherical Bessel function. + |
+
src/echosms/utils.py
89 + 90 + 91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 +100 +101 +102 +103 +104 +105 |
|
split_dict(d, s)
+
+Split a dict into two dicts based on a list of keys.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
d |
+
+ dict
+ |
+
+
+
+ Dict to be split. + |
+ + required + | +
s |
+
+ list
+ |
+
+
+
+ List of dict keys to use for splitting |
+ + required + | +
Returns:
+Type | +Description | +
---|---|
+ tuple(dict, dict)
+ |
+
+
+
+ The |
+
src/echosms/utils.py
230 +231 +232 +233 +234 +235 +236 +237 +238 +239 +240 +241 +242 +243 +244 +245 +246 +247 +248 +249 |
|
wavenumber(c, f)
+
+Calculate the acoustic wavenumber.
+ + +Parameters:
+Name | +Type | +Description | +Default | +
---|---|---|---|
c |
+
+ float
+ |
+
+
+
+ Sound speed [m/s] + |
+ + required + | +
f |
+
+ float
+ |
+
+
+
+ Frequency [Hz] + |
+ + required + | +
Returns:
+Type | +Description | +
---|---|
+ float
+ |
+
+
+
+ The acoustic wavenumber [m⁻¹]. + |
+
src/echosms/utils.py
28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 |
|