-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiprod.m
581 lines (512 loc) · 23.7 KB
/
multiprod.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
function c = multiprod(a, b, idA, idB)
%MULTIPROD Multiplying 1-D or 2-D subarrays contained in two N-D arrays.
% C = MULTIPROD(A,B) is equivalent to C = MULTIPROD(A,B,[1 2],[1 2])
% C = MULTIPROD(A,B,[D1 D2]) is eq. to C = MULTIPROD(A,B,[D1 D2],[D1 D2])
% C = MULTIPROD(A,B,D1) is equival. to C = MULTIPROD(A,B,D1,D1)
%
% MULTIPROD performs multiple matrix products, with array expansion (AX)
% enabled. Its first two arguments A and B are "block arrays" of any
% size, containing one or more 1-D or 2-D subarrays, called "blocks" (*).
% For instance, a 5×6×3 array may be viewed as an array containing five
% 6×3 blocks. In this case, its size is denoted by 5×(6×3). The 1 or 2
% adjacent dimensions along which the blocks are contained are called the
% "internal dimensions" (IDs) of the array (°).
%
% 1) 2-D by 2-D BLOCK(S) (*)
% C = MULTIPROD(A, B, [DA1 DA2], [DB1 DB2]) contains the products
% of the P×Q matrices in A by the R×S matrices in B. [DA1 DA2] are
% the IDs of A; [DB1 DB2] are the IDs of B.
%
% 2) 2-D by 1-D BLOCK(S) (*)
% C = MULTIPROD(A, B, [DA1 DA2], DB1) contains the products of the
% P×Q matrices in A by the R-element vectors in B. The latter are
% considered to be R×1 matrices. [DA1 DA2] are the IDs of A; DB1 is
% the ID of B.
%
% 3) 1-D by 2-D BLOCK(S) (*)
% C = MULTIPROD(A, B, DA1, [DB1 DB2]) contains the products of the
% Q-element vectors in A by the R×S matrices in B. The vectors in A
% are considered to be 1×Q matrices. DA1 is the ID of A; [DB1 DB2]
% are the IDs of B.
%
% 4) 1-D BY 1-D BLOCK(S) (*)
% (a) If either SIZE(A, DA1) == 1 or SIZE(B, DB1) == 1, or both,
% C = MULTIPROD(A, B, DA1, DB1) returns products of scalars by
% vectors, or vectors by scalars or scalars by scalars.
% (b) If SIZE(A, DA1) == SIZE(B, DB1),
% C = MULTIPROD(A, B, [0 DA1], [DB1 0]) or
% C = MULTIPROD(A, B, DA1, DB1) virtually turns the vectors
% contained in A and B into 1×P and P×1 matrices, respectively,
% then returns their products, similar to scalar products.
% Namely, C = DOT2(A, B, DA1, DB1) is equivalent to
% C = MULTIPROD(CONJ(A), B, [0 DA1], [DB1 0]).
% (c) Without limitations on the length of the vectors in A and B,
% C = MULTIPROD(A, B, [DA1 0], [0 DB1]) turns the vectors
% contained in A and B into P×1 and 1×Q matrices, respectively,
% then returns their products, similar to outer products.
% Namely, C = OUTER(A, B, DA1, DB1) is equivalent to
% C = MULTIPROD(CONJ(A), B, [DA1 0], [0 DB1]).
%
% Common constraints for all syntaxes:
% The external dimensions of A and B must either be identical or
% compatible with AX rules. The internal dimensions of each block
% array must be adjacent (DA2 == DA1 + 1 and DB2 == DB1 + 1 are
% required). DA1 and DB1 are allowed to be larger than NDIMS(A) and
% NDIMS(B). In syntaxes 1, 2, and 3, Q == R is required, unless the
% blocks in A or B are scalars.
%
% Array expansion (AX):
% AX is a powerful generalization to N-D of the concept of scalar
% expansion. Indeed, A and B may be scalars, vectors, matrices or
% multi-dimensional arrays. Scalar expansion is the virtual
% replication or annihilation of a scalar which allows you to combine
% it, element by element, with an array X of any size (e.g. X+10,
% X*10, or []-10). Similarly, in MULTIPROD, the purpose of AX is to
% automatically match the size of the external dimensions (EDs) of A
% and B, so that block-by-block products can be performed. ED matching
% is achieved by means of a dimension shift followed by a singleton
% expansion:
% 1) Dimension shift (see SHIFTDIM).
% Whenever DA1 ~= DB1, a shift is applied to impose DA1 == DB1.
% If DA1 > DB1, B is shifted to the right by DA1 - DB1 steps.
% If DB1 > DA1, A is shifted to the right by DB1 - DA1 steps.
% 2) Singleton expansion (SX).
% Whenever an ED of either A or B is singleton and the
% corresponding ED of the other array is not, the mismatch is
% fixed by virtually replicating the array (or diminishing it to
% length 0) along that dimension.
%
% MULTIPROD is a generalization for N-D arrays of the matrix
% multiplication function MTIMES, with AX enabled. Vector inner, outer,
% and cross products generalized for N-D arrays and with AX enabled are
% performed by DOT2, OUTER, and CROSS2 (MATLAB Central, file #8782).
% Elementwise multiplications (see TIMES) and other elementwise binary
% operations with AX enabled are performed by BAXFUN (MATLAB Central,
% file #23084). Together, these functions make up the “ARRAYLAB toolbox”.
%
% Input and output format:
% The size of the EDs of C is determined by AX. Block size is
% determined as follows, for each of the above-listed syntaxes:
% 1) C contains P×S matrices along IDs MAX([DA1 DA2], [DB1 DB2]).
% 2) Array Block size ID(s)
% ----------------------------------------------------
% A P×Q (2-D) [DA1 DA2]
% B R (1-D) DB1
% C (a) P (1-D) MAX(DA1, DB1)
% C (b) P×Q (2-D) MAX([DA1 DA2], [DB1 DB1+1])
% ----------------------------------------------------
% (a) The 1-D blocks in B are not scalars (R > 1).
% (b) The 1-D blocks in B are scalars (R = 1).
% 3) Array Block size ID(s)
% ----------------------------------------------------
% A Q (1-D) DA1
% B R×S (2-D) [DB1 DB2]
% C (a) S (1-D) MAX(DA1, DB1)
% C (b) R×S (2-D) MAX([DA1 DA1+1], [DB1 DB2])
% ----------------------------------------------------
% (a) The 1-D blocks in A are not scalars (Q > 1).
% (b) The 1-D blocks in A are scalars (Q = 1).
% 4) Array Block size ID(s)
% --------------------------------------------------------------
% (a) A P (1-D) DA1
% B Q (1-D) DB1
% C MAX(P,Q) (1-D) MAX(DA1, DB1)
% --------------------------------------------------------------
% (b) A P (1-D) DA1
% B P (1-D) DB1
% C 1 (1-D) MAX(DA1, DB1)
% --------------------------------------------------------------
% (c) A P (1-D) DA1
% B Q (1-D) DB1
% C P×Q (2-D) MAX([DA1 DA1+1], [DB1 DB1+1])
% --------------------------------------------------------------
%
% Terminological notes:
% (*) 1-D and 2-D blocks are generically referred to as "vectors" and
% "matrices", respectively. However, both may be also called
% “scalars” if they have a single element. Moreover, matrices with a
% single row or column (e.g. 1×3 or 3×1) may be also called “row
% vectors” or “column vectors”.
% (°) Not to be confused with the "inner dimensions" of the two matrices
% involved in a product X * Y, defined as the 2nd dimension of X and
% the 1st of Y (DA2 and DB1 in syntaxes 1, 2, 3).
%
% Examples:
% 1) If A is .................... a 5×(6×3)×2 array,
% and B is .................... a 5×(3×4)×2 array,
% C = MULTIPROD(A, B, [2 3]) is a 5×(6×4)×2 array.
%
% A single matrix A pre-multiplies each matrix in B
% If A is ........................... a (1×3) single matrix,
% and B is ........................... a 10×(3×4) 3-D array,
% C = MULTIPROD(A, B, [1 2], [3 4]) is a 10×(1×4) 3-D array.
%
% Each matrix in A pre-multiplies each matrix in B (all possible
% combinations)
% If A is .................... a (6×3)×5 array,
% and B is .................... a (3×4)×1×2 array,
% C = MULTIPROD(A, B, [1 2]) is a (6×4)×5×2 array.
%
% 2a) If A is ........................... a 5×(6×3)×2 4-D array,
% and B is ........................... a 5×(3)×2 3-D array,
% C = MULTIPROD(A, B, [2 3], [2]) is a 5×(6)×2 3-D array.
%
% 2b) If A is ........................... a 5×(6×3)×2 4-D array,
% and B is ........................... a 5×(1)×2 3-D array,
% C = MULTIPROD(A, B, [2 3], [2]) is a 5×(6×3)×2 4-D array.
%
% 4a) If both A and B are .................. 5×(6)×2 3-D arrays,
% C = MULTIPROD(A, B, 2) is .......... a 5×(1)×2 3-D array, while
% 4b) C = MULTIPROD(A, B, [2 0], [0 2]) is a 5×(6×6)×2 4-D array
%
% See also DOT2, OUTER, CROSS2, BAXFUN, MULTITRANSP.
% $ Version: 2.1 $
% CODE by: Paolo de Leva
% (Univ. of Rome, Foro Italico, IT) 2009 Jan 24
% optimized by: Paolo de Leva
% Jinhui Bai (Georgetown Univ., D.C.) 2009 Jan 24
% COMMENTS by: Paolo de Leva 2009 Feb 24
% OUTPUT tested by: Paolo de Leva 2009 Feb 24
% -------------------------------------------------------------------------
error( nargchk(2, 4, nargin) ); % Allow 2 to 4 input arguments
switch nargin % Setting IDA and/or IDB
case 2, idA = [1 2]; idB = [1 2];
case 3, idB = idA;
end
% ESC 1 - Special simple case (both A and B are 2D), solved using C = A * B
if ndims(a)==2 && ndims(b)==2 && ...
isequal(idA,[1 2]) && isequal(idB,[1 2])
c = a * b; return
end
% MAIN 0 - Checking and evaluating array size, block size, and IDs
sizeA0 = size(a);
sizeB0 = size(b);
[sizeA, sizeB, shiftC, delC, sizeisnew, idA, idB, ...
squashOK, sxtimesOK, timesOK, mtimesOK, sumOK] = ...
sizeval(idA,idB, sizeA0,sizeB0);
% MAIN 1 - Applying dimension shift (first step of AX) and
% turning both A and B into arrays of either 1-D or 2-D blocks
if sizeisnew(1), a = reshape(a, sizeA); end
if sizeisnew(2), b = reshape(b, sizeB); end
% MAIN 2 - Performing products with or without SX (second step of AX)
if squashOK % SQUASH + MTIMES (fastest engine)
c = squash2D_mtimes(a,b, idA,idB, sizeA,sizeB, squashOK);
elseif timesOK % TIMES (preferred w.r. to SX + TIMES)
if sumOK, c = sum(a .* b, sumOK);
else c = a .* b; end
elseif sxtimesOK % SX + TIMES
if sumOK, c = sum(bsxfun(@times, a, b), sumOK);
else c = bsxfun(@times, a, b); end
elseif mtimesOK % MTIMES (rarely used)
c = a * b;
end
% MAIN 3 - Reshaping C (by inserting or removing singleton dimensions)
[sizeC sizeCisnew] = adjustsize(size(c), shiftC, false, delC, false);
if sizeCisnew, c = reshape(c, sizeC); end
function c = squash2D_mtimes(a, b, idA, idB, sizeA, sizeB, squashOK)
% SQUASH2D_MTIMES Multiproduct with single-block expansion (SBX).
% Actually, no expansion is performed. The multi-block array is
% rearranged from N-D to 2-D, then MTIMES is applied, and eventually the
% result is rearranged back to N-D. No additional memory is required.
% One and only one of the two arrays must be single-block, and its IDs
% must be [1 2] (MAIN 1 removes leading singletons). Both arrays
% must contain 2-D blocks (MAIN 1 expands 1-D blocks to 2-D).
if squashOK == 1 % A is multi-block, B is single-block (squashing A)
% STEP 1 - Moving IDA(2) to last dimension
nd = length(sizeA);
d2 = idA(2);
order = [1:(d2-1) (d2+1):nd d2]; % Partial shifting
a = permute(a, order); % ...×Q
% STEP 2 - Squashing A from N-D to 2-D
q = sizeB(1);
s = sizeB(2);
lengthorder = length(order);
collapsedsize = sizeA(order(1:lengthorder-1));
n = prod(collapsedsize);
a = reshape(a, [n, q]); % N×Q
fullsize = [collapsedsize s]; % Size to reshape C back to N-D
else % B is multi-block, A is single-block (squashing B)
% STEP 1 - Moving IDB(1) to first dimension
nd = length(sizeB);
d1 = idB(1);
order = [d1 1:(d1-1) (d1+1):nd]; % Partial shifting
b = permute(b, order); % Q×...
% STEP 2 - Squashing B from N-D to 2-D
p = sizeA(1);
q = sizeA(2);
lengthorder = length(order);
collapsedsize = sizeB(order(2:lengthorder));
n = prod(collapsedsize);
b = reshape(b, [q, n]); % Q×N
fullsize = [p collapsedsize]; % Size to reshape C back to N-D
end
% FINAL STEPS - Multiplication, reshape to N-D, inverse permutation
invorder(order) = 1 : lengthorder;
c = permute (reshape(a*b, fullsize), invorder);
function [sizeA, sizeB, shiftC, delC, sizeisnew, idA, idB, ...
squashOK, sxtimesOK, timesOK, mtimesOK, sumOK] = ...
sizeval(idA0,idB0, sizeA0,sizeB0)
%SIZEVAL Evaluation of array size, block size, and IDs
% Possible values for IDA and IDB:
% [DA1 DA2], [DB1 DB2]
% [DA1 DA2], [DB1]
% [DA1], [DB1 DB2]
% [DA1], [DB1]
% [DA1 0], [0 DB1]
% [0 DA1], [DB1 0]
%
% sizeA/B Equal to sizeA0/B0 if RESHAPE is not needed in MAIN 1
% shiftC, delC Variables controlling MAIN 3.
% sizeisnew 1x2 logical array; activates reshaping of A and B.
% idA/B May change only if squashOK ~= 0
% squashOK If only A or B is a multi-block array (M-B) and the other
% is single-block (1-B), it will be rearranged from N-D to
% 2-D. If both A and B are 1-B or M-B arrays, squashOK = 0.
% If only A (or B) is a M-B array, squashOK = 1 (or 2).
% sxtimesOK, timesOK, mtimesOK Flags controlling MAIN 2 (TRUE/FALSE).
% sumOK Dimension along which SUM is performed. If SUM is not
% needed, sumOK = 0.
% Initializing output arguments
idA = idA0;
idB = idB0;
squashOK = 0;
sxtimesOK = false;
timesOK = false;
mtimesOK = false;
sumOK = 0;
shiftC = 0;
delC = 0;
% Checking for gross input errors
NidA = numel(idA);
NidB = numel(idB);
idA1 = idA(1);
idB1 = idB(1);
if NidA>2 || NidB>2 || NidA==0 || NidB==0 || ...
~isreal(idA1) || ~isreal(idB1) || ...
~isnumeric(idA1) || ~isnumeric(idB1) || ...
0>idA1 || 0>idB1 || ... % negative
idA1~=fix(idA1) || idB1~=fix(idB1) || ... % non-integer
~isfinite(idA1) || ~isfinite(idB1) % Inf or NaN
error('MULTIPROD:InvalidDimensionArgument', ...
['Internal-dimension arguments (e.g., [IDA1 IDA2]) must\n', ...
'contain only one or two non-negative finite integers']);
end
% Checking Syntaxes containing zeros (4b/c)
declared_outer = false;
idA2 = idA(NidA); % It may be IDA1 = IDA2 (1-D block)
idB2 = idB(NidB);
if any(idA==0) || any(idB==0)
% "Inner products": C = MULTIPROD(A, B, [0 DA1], [DB1 0])
if idA1==0 && idA2>0 && idB1>0 && idB2==0
idA1 = idA2;
idB2 = idB1;
% "Outer products": C = MULTIPROD(A, B, [DA1 0], [0 DB1])
elseif idA1>0 && idA2==0 && idB1==0 && idB2>0
declared_outer = true;
idA2 = idA1;
idB1 = idB2;
else
error('MULTIPROD:InvalidDimensionArgument', ...
['Misused zeros in the internal-dimension arguments\n', ...
'(see help heads 4b and 4c)']);
end
NidA = 1;
NidB = 1;
idA = idA1;
idB = idB1;
elseif (NidA==2 && idA2~=idA1+1) || ... % Non-adjacent IDs
(NidB==2 && idB2~=idB1+1)
error('MULTIPROD:InvalidDimensionArgument', ...
['If an array contains 2-D blocks, its two internal dimensions', ...
'must be adjacent (e.g. IDA2 == IDA1+1)']);
end
% ESC - Case for which no reshaping is needed (both A and B are scalars)
scalarA = isequal(sizeA0, [1 1]);
scalarB = isequal(sizeB0, [1 1]);
if scalarA && scalarB
sizeA = sizeA0;
sizeB = sizeB0;
sizeisnew = [false false];
timesOK = true; return
end
% Computing and checking adjusted sizes
% The lengths of ADJSIZEA and ADJSIZEB must be >= IDA(END) and IDB(END)
NsA = idA2 - length(sizeA0); % Number of added trailing singletons
NsB = idB2 - length(sizeB0);
adjsizeA = [sizeA0 ones(1,NsA)];
adjsizeB = [sizeB0 ones(1,NsB)];
extsizeA = adjsizeA([1:idA1-1, idA2+1:end]); % Size of EDs
extsizeB = adjsizeB([1:idB1-1, idB2+1:end]);
p = adjsizeA(idA1);
q = adjsizeA(idA2);
r = adjsizeB(idB1);
s = adjsizeB(idB2);
scalarsinA = (p==1 && q==1);
scalarsinB = (r==1 && s==1);
singleA = all(extsizeA==1);
singleB = all(extsizeB==1);
if q~=r && ~scalarsinA && ~scalarsinB && ~declared_outer
error('MULTIPROD:InnerDimensionsMismatch', ...
'Inner matrix dimensions must agree.');
end
% STEP 1/3 - DIMENSION SHIFTING (FIRST STEP OF AX)
% Pipeline 1 (using TIMES) never needs left, and may need right shifting.
% Pipeline 2 (using MTIMES) may need left shifting of A and right of B.
shiftA = 0;
shiftB = 0;
diffBA = idB1 - idA1;
if scalarA % Do nothing
elseif singleA && ~scalarsinB, shiftA = -idA1 + 1; % Left shifting A
elseif idB1 > idA1, shiftA = diffBA; % Right shifting A
end
if scalarB % Do nothing
elseif singleB && ~scalarsinA, shiftB = -idB1 + 1; % Left shifting B
elseif idA1 > idB1, shiftB = -diffBA; % Right shifting B
end
% STEP 2/3 - SELECTION OF PROPER ENGINE AND BLOCK SIZE ADJUSTMENTS
addA = 0; addB = 0;
delA = 0; delB = 0;
swapA = 0; swapB = 0;
idC1 = max(idA1, idB1);
idC2 = idC1 + 1;
checktimes = false;
if (singleA||singleB) &&~scalarsinA &&~scalarsinB % Engine using MTIMES
if singleA && singleB
mtimesOK = true;
shiftC=idC1-1; % Right shifting C
idC1=1; idC2=2;
elseif singleA
squashOK = 2;
idB = [idB1, idB1+1] + shiftB;
else % singleB
squashOK = 1;
idA = [idA1, idA1+1] + shiftA;
end
if NidA==2 && NidB==2 % 1) 2-D BLOCKS BY 2-D BLOCKS
% OK
elseif NidA==2 % 2) 2-D BLOCKS BY 1-D BLOCKS
addB=idB1+1; delC=idC2;
elseif NidB==2 % 3) 1-D BLOCKS BY 2-D BLOCKS
addA=idA1; delC=idC1;
else % 4) 1-D BLOCKS BY 1-D BLOCKS
if declared_outer
addA=idA1+1; addB=idB1;
else
addA=idA1; addB=idB1+1; delC=idC2;
end
end
else % Engine using TIMES (also used if SCALARA || SCALARB)
sxtimesOK = true;
if NidA==2 && NidB==2 % 1) 2-D BLOCKS BY 2-D BLOCKS
if scalarA || scalarB
timesOK=true;
elseif scalarsinA && scalarsinB % scal-by-scal
checktimes=true;
elseif scalarsinA || scalarsinB || ... % scal-by-mat
(q==1 && r==1) % vec-by-vec ("outer")
elseif p==1 && s==1 % vec-by-vec ("inner")
swapA=idA1; sumOK=idC1; checktimes=true;
elseif s==1 % mat-by-vec
swapB=idB1; sumOK=idC2;
elseif p==1 % vec-by-mat
swapA=idA1; sumOK=idC1;
else % mat-by-mat
addA=idA2+1; addB=idB1; sumOK=idC2; delC=idC2;
end
elseif NidA==2 % 2) 2-D BLOCKS BY 1-D BLOCKS
if scalarA || scalarB
timesOK=true;
elseif scalarsinA && scalarsinB % scal-by-scal
addB=idB1; checktimes=true;
elseif scalarsinA % scal-by-vec
delA=idA1;
elseif scalarsinB % mat-by-scal
addB=idB1;
elseif p==1 % vec-by-vec ("inner")
delA=idA1; sumOK=idC1; checktimes=true;
else % mat-by-vec
addB=idB1; sumOK=idC2; delC=idC2;
end
elseif NidB==2 % 3) 1-D BLOCKS BY 2-D BLOCKS
if scalarA || scalarB
timesOK=true;
elseif scalarsinA && scalarsinB % scal-by-scal
addA=idA1+1; checktimes=true;
elseif scalarsinB % vec-by-scal
delB=idB2;
elseif scalarsinA % scal-by-mat
addA=idA1+1;
elseif s==1 % vec-by-vec ("inner")
delB=idB2; sumOK=idC1; checktimes=true;
else % vec-by-mat
addA=idA1+1; sumOK=idC1; delC=idC1;
end
else % 4) 1-D BLOCKS BY 1-D BLOCKS
if scalarA || scalarB
timesOK=true;
elseif declared_outer % vec-by-vec ("outer")
addA=idA1+1; addB=idB1;
elseif scalarsinA && scalarsinB % scal-by-scal
checktimes=true;
elseif scalarsinA || scalarsinB % vec-by-scal
else % vec-by-vec
sumOK=idC1; checktimes=true;
end
end
end
% STEP 3/3 - Adjusting the size of A and B. The size of C is adjusted
% later, because it is not known yet.
[sizeA, sizeisnew(1)] = adjustsize(sizeA0, shiftA, addA, delA, swapA);
[sizeB, sizeisnew(2)] = adjustsize(sizeB0, shiftB, addB, delB, swapB);
if checktimes % Faster than calling BBXFUN
diff = length(sizeB) - length(sizeA);
if isequal([sizeA ones(1,diff)], [sizeB ones(1,-diff)])
timesOK = true;
end
end
function [sizeA, sizeisnew] = adjustsize(sizeA0, shiftA, addA, delA, swapA)
% ADJUSTSIZE Adjusting size of a block array.
% Dimension shifting (by adding or deleting trailing singleton dim.)
if shiftA>0, [sizeA,newA1] = addsing(sizeA0, 1, shiftA);
elseif shiftA<0, [sizeA,newA1] = delsing(sizeA0, 1,-shiftA);
else sizeA = sizeA0; newA1 = false;
end
% Modifying block size (by adding, deleting, or moving singleton dim.)
if addA, [sizeA,newA2] = addsing(sizeA, addA+shiftA, 1); % 1D-->2D
elseif delA, [sizeA,newA2] = delsing(sizeA, delA+shiftA, 1); % 2D-->1D
elseif swapA, [sizeA,newA2] = swapdim(sizeA,swapA+shiftA); % ID Swapping
else newA2 = false;
end
sizeisnew = newA1 || newA2;
function [newsize, flag] = addsing(size0, dim, ns)
%ADDSING Adding NS singleton dimensions to the size of an array.
% Warning: NS is assumed to be a positive integer.
% Example: If the size of A is ..... SIZE0 = [5 9 3]
% NEWSIZE = ADDSING(SIZE0, 3, 2) is [5 9 1 1 3]
if dim > length(size0)
newsize = size0;
flag = false;
else
newsize = [size0(1:dim-1), ones(1,ns), size0(dim:end)];
flag = true;
end
function [newsize, flag] = delsing(size0, dim, ns)
%DELSING Removing NS singleton dimensions from the size of an array.
% Warning: Trailing singletons are not removed
% Example: If the size of A is SIZE0 = [1 1 1 5 9 3]
% NEWSIZE = DELSING(SIZE, 1, 3) is [5 9 3]
if dim > length(size0)-ns % Trailing singletons are not removed
newsize = size0;
flag = false;
else % Trailing singl. added, so NEWSIZE is guaranteed to be 2D or more
newsize = size0([1:dim-1, dim+ns:end, dim]);
flag = true;
end
function [newsize, flag] = swapdim(size0, dim)
%SWAPDIM Swapping two adjacent dimensions of an array (DIM and DIM+1).
% Used only when both A and B are multi-block arrays with 2-D blocks.
% Example: If the size of A is .......... 5×(6×3)
% NEWSIZE = SWAPIDS(SIZE0, 2) is 5×(3×6)
newsize = [size0 1]; % Guarantees that dimension DIM+1 exists.
newsize = newsize([1:dim-1, dim+1, dim, dim+2:end]);
flag = true;