-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathrun_self_har.py
561 lines (453 loc) · 27.1 KB
/
run_self_har.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import os
import gc
import pickle
import argparse
import datetime
import time
import json
import distutils.util
import pprint
import numpy as np
import tensorflow as tf
import scipy.constants
import sklearn
import data_pre_processing
import self_har_models
import self_har_utilities
import self_har_trainers
import transformations
__author__ = "C. I. Tang"
__copyright__ = "Copyright (C) 2021 C. I. Tang"
"""
Complementing the work of Tang et al.: SelfHAR: Improving Human Activity Recognition through Self-training with Unlabeled Data
@article{10.1145/3448112,
author = {Tang, Chi Ian and Perez-Pozuelo, Ignacio and Spathis, Dimitris and Brage, Soren and Wareham, Nick and Mascolo, Cecilia},
title = {SelfHAR: Improving Human Activity Recognition through Self-Training with Unlabeled Data},
year = {2021},
issue_date = {March 2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {5},
number = {1},
url = {https://doi.org/10.1145/3448112},
doi = {10.1145/3448112},
abstract = {Machine learning and deep learning have shown great promise in mobile sensing applications, including Human Activity Recognition. However, the performance of such models in real-world settings largely depends on the availability of large datasets that captures diverse behaviors. Recently, studies in computer vision and natural language processing have shown that leveraging massive amounts of unlabeled data enables performance on par with state-of-the-art supervised models.In this work, we present SelfHAR, a semi-supervised model that effectively learns to leverage unlabeled mobile sensing datasets to complement small labeled datasets. Our approach combines teacher-student self-training, which distills the knowledge of unlabeled and labeled datasets while allowing for data augmentation, and multi-task self-supervision, which learns robust signal-level representations by predicting distorted versions of the input.We evaluated SelfHAR on various HAR datasets and showed state-of-the-art performance over supervised and previous semi-supervised approaches, with up to 12% increase in F1 score using the same number of model parameters at inference. Furthermore, SelfHAR is data-efficient, reaching similar performance using up to 10 times less labeled data compared to supervised approaches. Our work not only achieves state-of-the-art performance in a diverse set of HAR datasets, but also sheds light on how pre-training tasks may affect downstream performance.},
journal = {Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.},
month = mar,
articleno = {36},
numpages = {30},
keywords = {semi-supervised training, human activity recognition, unlabeled data, self-supervised training, self-training, deep learning}
}
Access to Article:
https://doi.org/10.1145/3448112
https://dl.acm.org/doi/abs/10.1145/3448112
Contact: cit27@cl.cam.ac.uk
Copyright (C) 2021 C. I. Tang
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
LOGS_SUB_DIRECTORY = 'logs'
MODELS_SUB_DIRECTORY = 'models'
def get_parser():
def strtobool(v):
return bool(distutils.util.strtobool(v))
parser = argparse.ArgumentParser(
description='SelfHAR Training')
parser.add_argument('--working_directory', default='run',
help='directory containing datasets, trained models and training logs')
parser.add_argument('--config', default='sample_configs/self_har.json',
help='')
parser.add_argument('--labelled_dataset_path', default='run/processed_datasets/motionsense_processed.pkl', type=str,
help='name of the labelled dataset for training and fine-tuning')
parser.add_argument('--unlabelled_dataset_path', default='run/processed_datasets/hhar_processed.pkl', type=str,
help='name of the unlabelled dataset to self-training and self-supervised training, ignored if only supervised training is performed.')
parser.add_argument('--window_size', default=400, type=int,
help='the size of the sliding window')
parser.add_argument('--max_unlabelled_windows', default=40000, type=int,
help='')
parser.add_argument('--use_tensor_board_logging', default=True, type=strtobool,
help='')
parser.add_argument('--verbose', default=1, type=int,
help='verbosity level')
return parser
def prepare_dataset(dataset_path, window_size, get_train_test_users, validation_split_proportion=0.1, verbose=1):
if verbose > 0:
print(f"Loading dataset at {dataset_path}")
with open(dataset_path, 'rb') as f:
dataset_dict = pickle.load(f)
user_datasets = dataset_dict['user_split']
label_list = dataset_dict['label_list']
label_map = dict([(l, i) for i, l in enumerate(label_list)])
output_shape = len(label_list)
har_users = list(user_datasets.keys())
train_users, test_users = get_train_test_users(har_users)
if verbose > 0:
print(f'Testing users: {test_users}, Training users: {train_users}')
np_train, np_val, np_test = data_pre_processing.pre_process_dataset_composite(
user_datasets=user_datasets,
label_map=label_map,
output_shape=output_shape,
train_users=train_users,
test_users=test_users,
window_size=window_size,
shift=window_size//2,
normalise_dataset=True,
validation_split_proportion=validation_split_proportion,
verbose=verbose
)
return {
'train': np_train,
'val': np_val,
'test': np_test,
'label_map': label_map,
'input_shape': np_train[0].shape[1:],
'output_shape': output_shape,
}
def generate_unlabelled_datasets_variations(unlabelled_data_x, labelled_data_x, labelled_repeat=1, verbose=1):
if verbose > 0:
print("Unlabeled data shape: ", unlabelled_data_x.shape)
labelled_data_repeat = np.repeat(labelled_data_x, labelled_repeat, axis=0)
np_unlabelled_combined = np.concatenate([unlabelled_data_x, labelled_data_repeat])
if verbose > 0:
print(f"Unlabelled Combined shape: {np_unlabelled_combined.shape}")
gc.collect()
return {
'labelled_x_repeat': labelled_data_repeat,
'unlabelled_combined': np_unlabelled_combined
}
def load_unlabelled_dataset(prepared_datasets, unlabelled_dataset_path, window_size, labelled_repeat, max_unlabelled_windows=None, verbose=1):
def get_empty_test_users(har_users):
return (har_users, [])
prepared_datasets['unlabelled'] = prepare_dataset(unlabelled_dataset_path, window_size, get_empty_test_users, validation_split_proportion=0, verbose=verbose)['train'][0]
if max_unlabelled_windows is not None:
prepared_datasets['unlabelled'] = prepared_datasets['unlabelled'][:max_unlabelled_windows]
prepared_datasets = {
**prepared_datasets,
**generate_unlabelled_datasets_variations(
prepared_datasets['unlabelled'],
prepared_datasets['labelled']['train'][0],
labelled_repeat=labelled_repeat
)}
return prepared_datasets
def get_config_default_value_if_none(experiment_config, entry, set_value=True):
if entry in experiment_config:
return experiment_config[entry]
if entry == 'type':
default_value = 'none'
elif entry == 'tag':
default_value = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
elif entry == 'previous_config_offset':
default_value = 0
elif entry == 'initial_learning_rate':
default_value = 0.0003
elif entry == 'epochs':
default_value = 30
elif entry == 'batch_size':
default_value = 300
elif entry == 'optimizer':
default_value = 'adam'
elif entry == 'self_training_samples_per_class':
default_value = 10000
elif entry == 'self_training_minimum_confidence':
default_value = 0.0
elif entry == 'self_training_plurality_only':
default_value = True
elif entry == 'trained_model_path':
default_value = ''
elif entry == 'trained_model_type':
default_value = 'unknown'
elif entry == 'eval_results':
default_value = {}
elif entry == 'eval_har':
default_value = False
if set_value:
experiment_config[entry] = default_value
print(f"INFO: configuration {entry} set to default value: {default_value}.")
return default_value
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
current_time_string = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
working_directory = args.working_directory
verbose = args.verbose
use_tensor_board_logging = args.use_tensor_board_logging
window_size = args.window_size
if use_tensor_board_logging:
logs_directory = os.path.join(working_directory, LOGS_SUB_DIRECTORY)
if not os.path.exists(logs_directory):
os.mkdir(logs_directory)
models_directory = os.path.join(working_directory, MODELS_SUB_DIRECTORY)
if not os.path.exists(models_directory):
os.mkdir(models_directory)
transform_funcs_vectorized = [
transformations.noise_transform_vectorized,
transformations.scaling_transform_vectorized,
transformations.rotation_transform_vectorized,
transformations.negate_transform_vectorized,
transformations.time_flip_transform_vectorized,
transformations.time_segment_permutation_transform_improved,
transformations.time_warp_transform_low_cost,
transformations.channel_shuffle_transform_vectorized
]
transform_funcs_names = ['noised', 'scaled', 'rotated', 'negated', 'time_flipped', 'permuted', 'time_warped', 'channel_shuffled']
prepared_datasets = {}
labelled_repeat = 1 # TODO: improve flexibility transformation_multiple
def get_fixed_split_users(har_users): # TODO: improve flexibility
test_users = har_users[0::5]
train_users = [u for u in har_users if u not in test_users]
return (train_users, test_users)
prepared_datasets['labelled'] = prepare_dataset(args.labelled_dataset_path, window_size, get_fixed_split_users, validation_split_proportion=0.1, verbose=verbose)
input_shape = prepared_datasets['labelled']['input_shape'] # (window_size, 3)
output_shape = prepared_datasets['labelled']['output_shape']
with open(args.config, 'r') as f:
config_file = json.load(f)
file_tag = config_file['tag']
experiment_configs = config_file['experiment_configs']
if verbose > 0:
print("Experiment Settings:")
for i, config in enumerate(experiment_configs):
print(f"Experiment {i}:")
print(config)
print("------------")
time.sleep(5)
for i, experiment_config in enumerate(experiment_configs):
if verbose > 0:
print("---------------------")
print(f"Starting Experiment {i}: {experiment_config}")
print("---------------------")
time.sleep(5)
gc.collect()
tf.keras.backend.clear_session()
experiment_type = get_config_default_value_if_none(experiment_config, 'type')
if experiment_type == 'none':
continue
if get_config_default_value_if_none(experiment_config, 'previous_config_offset') == 0:
previous_config = None
else:
previous_config = experiment_configs[i - experiment_config['previous_config_offset']]
# if verbose > 0:
# print("Previous config", previous_config)
tag = f"{current_time_string}_{file_tag}_{get_config_default_value_if_none(experiment_config, 'tag')}"
if experiment_type == 'eval_har':
if previous_config is None or get_config_default_value_if_none(previous_config, 'trained_model_path', set_value=False) == '':
print("ERROR Evaluation model does not exist")
continue
if get_config_default_value_if_none(previous_config, 'trained_model_type') == 'har_model':
previous_model = tf.keras.models.load_model(previous_config['trained_model_path'])
model = previous_model
elif get_config_default_value_if_none(previous_config, 'trained_model_type') == 'transform_with_har_model':
previous_model = tf.keras.models.load_model(previous_config['trained_model_path'])
model = self_har_models.extract_har_model(previous_model, optimizer=optimizer, model_name=tag)
pred = model.predict(prepared_datasets['labelled']['test'][0])
eval_results = self_har_utilities.evaluate_model_simple(pred, prepared_datasets['labelled']['test'][1])
if verbose > 0:
print(eval_results)
experiment_config['eval_results'] = eval_results
continue
initial_learning_rate = get_config_default_value_if_none(experiment_config, 'initial_learning_rate')
epochs = get_config_default_value_if_none(experiment_config, 'epochs')
batch_size = get_config_default_value_if_none(experiment_config, 'batch_size')
optimizer_type = get_config_default_value_if_none(experiment_config, 'optimizer')
if optimizer_type == 'adam':
optimizer = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)
elif optimizer_type == 'sgd':
optimizer = tf.keras.optimizers.SGD(learning_rate=initial_learning_rate)
if experiment_type == 'transform_train':
if 'unlabelled' not in prepared_datasets:
prepared_datasets = load_unlabelled_dataset(prepared_datasets, args.unlabelled_dataset_path, window_size, labelled_repeat, max_unlabelled_windows=args.max_unlabelled_windows, verbose=verbose)
if previous_config is None or get_config_default_value_if_none(previous_config, 'trained_model_path', set_value=False) == '':
if verbose > 0:
print("Creating new model...")
core_model = self_har_models.create_1d_conv_core_model(input_shape)
else:
if verbose > 0:
print(f"Loading previous model {previous_config['trained_model_path']}")
previous_model = tf.keras.models.load_model(previous_config['trained_model_path'])
core_model = self_har_models.extract_core_model(previous_model)
transform_model = self_har_models.attach_multitask_transform_head(core_model, output_tasks=transform_funcs_names, optimizer=optimizer)
transform_model.summary()
if verbose > 0:
print(f"Dataset for transformation discrimination shape: {prepared_datasets['unlabelled_combined'].shape}")
multitask_transform_dataset = self_har_utilities.create_individual_transform_dataset(prepared_datasets['unlabelled_combined'], transform_funcs_vectorized)
multitask_transform_train = (multitask_transform_dataset[0], self_har_utilities.map_multitask_y(multitask_transform_dataset[1], transform_funcs_names))
multitask_split = self_har_utilities.multitask_train_test_split(multitask_transform_train, test_size=0.10, random_seed=42)
multitask_train = (multitask_split[0], multitask_split[1])
multitask_val = (multitask_split[2], multitask_split[3])
def training_rate_schedule(epoch):
rate = initial_learning_rate * (0.5 ** (epoch // 15))
if verbose > 0:
print(f"RATE: {rate}")
return rate
training_schedule_callback = tf.keras.callbacks.LearningRateScheduler(training_rate_schedule)
best_transform_model_file_name, last_transform_pre_train_model_file_name = self_har_trainers.composite_train_model(
full_model=transform_model,
training_set=multitask_train,
validation_set=multitask_val,
working_directory=working_directory,
callbacks=[training_schedule_callback],
epochs=epochs,
batch_size=batch_size,
tag=tag,
use_tensor_board_logging=use_tensor_board_logging,
verbose=verbose
)
experiment_config['trained_model_path'] = best_transform_model_file_name
experiment_config['trained_model_type'] = 'transform_model'
if experiment_type == 'har_full_train' or experiment_type == 'har_full_fine_tune' or experiment_type == 'har_linear_train':
is_core_model = False
if previous_config is None or get_config_default_value_if_none(previous_config, 'trained_model_path', set_value=False) == '':
if verbose > 0:
print("Creating new model...")
core_model = self_har_models.create_1d_conv_core_model(input_shape)
is_core_model = True
else:
if verbose > 0:
print(f"Loading previous model {previous_config['trained_model_path']}")
previous_model = tf.keras.models.load_model(previous_config['trained_model_path'])
if experiment_type == 'har_linear_train':
core_model = self_har_models.extract_core_model(previous_model)
is_core_model = True
elif get_config_default_value_if_none(previous_config, 'trained_model_type') == 'har_model':
har_model = previous_model
is_core_model = False
elif previous_config['trained_model_type'] == 'transform_with_har_model':
har_model = self_har_models.extract_har_model(previous_model, optimizer=optimizer, model_name=tag)
is_core_model = False
else:
core_model = self_har_models.extract_core_model(previous_model)
is_core_model = True
if is_core_model:
if experiment_type == 'har_linear_train':
self_har_models.set_freeze_layers(core_model, num_freeze_layer_index=None)
har_model = self_har_models.attach_linear_classification_head(core_model, output_shape, optimizer=optimizer, model_name="Linear")
elif experiment_type == 'har_full_train':
self_har_models.set_freeze_layers(core_model, num_freeze_layer_index=0)
har_model = self_har_models.attach_full_har_classification_head(core_model, output_shape, optimizer=optimizer, num_units=1024, model_name="HAR")
elif experiment_type == 'har_full_fine_tune':
self_har_models.set_freeze_layers(core_model, num_freeze_layer_index=5)
har_model = self_har_models.attach_full_har_classification_head(core_model, output_shape, optimizer=optimizer, num_units=1024, model_name="HAR")
else:
if experiment_type == 'har_full_train':
self_har_models.set_freeze_layers(self_har_models.extract_core_model(har_model), num_freeze_layer_index=0)
elif experiment_type == 'har_full_fine_tune':
self_har_models.set_freeze_layers(self_har_models.extract_core_model(har_model), num_freeze_layer_index=5)
def training_rate_schedule(epoch):
rate = initial_learning_rate
if verbose > 0:
print(f"RATE: {rate}")
return rate
training_schedule_callback = tf.keras.callbacks.LearningRateScheduler(training_rate_schedule)
best_har_model_file_name, last_har_model_file_name = self_har_trainers.composite_train_model(
full_model=har_model,
training_set=prepared_datasets['labelled']['train'],
validation_set=prepared_datasets['labelled']['val'],
working_directory=working_directory,
callbacks=[training_schedule_callback],
epochs=epochs,
batch_size=batch_size,
tag=tag,
use_tensor_board_logging=use_tensor_board_logging,
verbose=verbose
)
experiment_config['trained_model_path'] = best_har_model_file_name
experiment_config['trained_model_type'] = 'har_model'
if experiment_type == 'self_training' or experiment_type == 'self_har':
if 'unlabelled' not in prepared_datasets:
prepared_datasets = load_unlabelled_dataset(prepared_datasets, args.unlabelled_dataset_path, window_size, labelled_repeat, max_unlabelled_windows=args.max_unlabelled_windows)
if previous_config is None or get_config_default_value_if_none(previous_config, 'trained_model_path', set_value=False) == '':
print("ERROR No previous model for self-training")
break
else:
if verbose > 0:
print(f"Loading previous model {previous_config['trained_model_path']}")
teacher_model = tf.keras.models.load_model(previous_config['trained_model_path'])
if verbose > 0:
print("Unlabelled Datasete Shape", prepared_datasets['unlabelled_combined'].shape)
unlabelled_pred_prob = teacher_model.predict(prepared_datasets['unlabelled_combined'], batch_size=batch_size)
np_self_labelled = self_har_utilities.pick_top_samples_per_class_np(
prepared_datasets['unlabelled_combined'],
unlabelled_pred_prob,
num_samples_per_class=get_config_default_value_if_none(experiment_config, 'self_training_samples_per_class'),
minimum_threshold=get_config_default_value_if_none(experiment_config, 'self_training_minimum_confidence'),
plurality_only=get_config_default_value_if_none(experiment_config, 'self_training_plurality_only')
)
multitask_X, multitask_transform_y, multitask_har_y = self_har_utilities.create_individual_transform_dataset(
np_self_labelled[0],
transform_funcs_vectorized,
other_labels=np_self_labelled[1]
)
core_model = self_har_models.create_1d_conv_core_model(input_shape)
def training_rate_schedule(epoch):
rate = 0.0003 * (0.5 ** (epoch // 15))
if verbose > 0:
print(f"RATE: {rate}")
return rate
training_schedule_callback = tf.keras.callbacks.LearningRateScheduler(training_rate_schedule)
if experiment_type == 'self_training':
student_pre_train_dataset = np_self_labelled
student_model = self_har_models.attach_full_har_classification_head(core_model, output_shape, optimizer=optimizer, model_name="StudentPreTrain")
student_model.summary()
pre_train_split = sklearn.model_selection.train_test_split(student_pre_train_dataset[0], student_pre_train_dataset[1], test_size=0.10, random_state=42)
student_pre_train_split_train = (pre_train_split[0], pre_train_split[2])
student_pre_train_split_val = (pre_train_split[1], pre_train_split[3])
else:
multitask_transform_y_mapped = self_har_utilities.map_multitask_y(multitask_transform_y, transform_funcs_names)
multitask_transform_y_mapped['har'] = multitask_har_y
self_har_train = (multitask_X, multitask_transform_y_mapped)
student_pre_train_dataset = self_har_train\
student_model = self_har_models.attach_multitask_transform_head(core_model, output_tasks=transform_funcs_names, optimizer=optimizer, with_har_head=True, har_output_shape=output_shape, num_units_har=1024, model_name="StudentPreTrain")
student_model.summary()
pre_train_split = self_har_utilities.multitask_train_test_split(student_pre_train_dataset, test_size=0.10, random_seed=42)
student_pre_train_split_train = (pre_train_split[0], pre_train_split[1])
student_pre_train_split_val = (pre_train_split[2], pre_train_split[3])
best_student_pre_train_file_name, last_student_pre_train_file_name = self_har_trainers.composite_train_model(
full_model=student_model,
training_set=student_pre_train_split_train,
validation_set=student_pre_train_split_val,
working_directory=working_directory,
callbacks=[training_schedule_callback],
epochs=epochs,
batch_size=batch_size,
tag=tag,
use_tensor_board_logging=use_tensor_board_logging,
verbose=verbose
)
experiment_config['trained_model_path'] = best_student_pre_train_file_name
if experiment_type == 'self_training':
experiment_config['trained_model_type'] = 'har_model'
else:
experiment_config['trained_model_type'] = 'transform_with_har_model'
if get_config_default_value_if_none(experiment_config, 'eval_har', set_value=False):
if get_config_default_value_if_none(experiment_config, 'trained_model_type') == 'har_model':
best_har_model = tf.keras.models.load_model(experiment_config['trained_model_path'])
elif get_config_default_value_if_none(experiment_config, 'trained_model_type') == 'transform_with_har_model':
previous_model = tf.keras.models.load_model(experiment_config['trained_model_path'])
best_har_model = self_har_models.extract_har_model(previous_model, optimizer=optimizer, model_name=tag)
else:
continue
pred = best_har_model.predict(prepared_datasets['labelled']['test'][0])
eval_results = self_har_utilities.evaluate_model_simple(pred, prepared_datasets['labelled']['test'][1])
if verbose > 0:
print(eval_results)
experiment_config['eval_results'] = eval_results
if verbose > 0:
print("Finshed running all experiments.")
print("Summary:")
for i, config in enumerate(experiment_configs):
print(f"Experiment {i}:")
print(config)
print("------------")
result_summary_path = os.path.join(working_directory, f"{current_time_string}_{file_tag}_results_summary.txt")
with open(result_summary_path, 'w') as f:
structured = pprint.pformat(experiment_configs, indent=4)
f.write(structured)
if verbose > 0:
print("Saved results summary to ", result_summary_path)