-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdtype_diet.py
112 lines (91 loc) · 3.81 KB
/
dtype_diet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""Propose RAM-saving changes in a DataFrame"""
import pandas as pd
import numpy as np
from collections import namedtuple
# TODO
# more tests
# test float64->float32->float16
# consider uint64/32/16/8
# does the "object" check work if col has non-str items?
# enable approx-equal with np.close (note for big nbrs, a big delta is "acceptable" with this)
# convert_dtypes converts e.g. int64 to Int64 (nullable) regardless of nulls, also obj->string
# so it doesn't save RAM but it does suggest new safer datatypes
# https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.convert_dtypes.html
# For a dtype count the nbr of conversions that aren't equal, the RAM cost
# of the conversion and the column name
AsType = namedtuple('AsType', ['dtype', 'nbr_different', 'nbytes', 'col'])
def count_errors(ser, new_dtype):
"""After converting ser to new dtype, count whether items have isclose()"""
tmp_ser = ser.astype(new_dtype)
# metric will be a list of Trues if the change has equivalent value, False otherwise
# checks for approx equal which may not be what we want
#metric = np.isclose(ser, tmp_ser)
metric = ser == tmp_ser
nbytes = tmp_ser.memory_usage(deep=True)
as_type = AsType(new_dtype, (~metric).sum(), nbytes, ser.name)
return as_type
def map_dtypes_to_choices(ser):
new_dtypes = {'int64': ['int32', 'int16', 'int8'],
'float64': ['float32', 'float16'],
'object': ['category']}
return new_dtypes.get(ser.dtype.name)
def get_smallest_valid_conversion(ser):
new_dtypes = map_dtypes_to_choices(ser)
if new_dtypes:
for new_dtype in reversed(new_dtypes):
as_type = count_errors(ser, new_dtype)
if as_type.nbr_different == 0:
return as_type
return None
def get_improvement(as_type, current_nbytes):
ram_usage_improvement = current_nbytes - as_type.nbytes
report = None
if ram_usage_improvement > 0:
report = f"save {ram_usage_improvement:,} bytes try `{as_type.col}.astype({as_type.dtype})`"
return report
def report_on_dataframe(df):
"""Report on columns that might be converted"""
print("Smallest non-breaking converstion per column:")
for col in df.columns:
as_type = get_smallest_valid_conversion(df[col])
nbytes = df[col].memory_usage(deep=True)
msg = None
if as_type:
report = get_improvement(as_type, nbytes)
if report:
msg = f"{col} ({df[col].dtype.name}) currently taking {nbytes:,} bytes, to {report}"
if msg:
print(msg)
else:
print(f"{col} ({df[col].dtype.name}) currently taking {nbytes:,} bytes - no suggestion")
def test_ser_ints():
# check for low simple int
ser = pd.Series([1] * 3)
as_type = count_errors(ser, 'int32')
assert as_type.nbr_different == 0
as_type = count_errors(ser, 'int16')
assert as_type.nbr_different == 0
as_type = count_errors(ser, 'int8')
assert as_type.nbr_different == 0
# check for int needing bigger than int16
ser = pd.Series([65536] * 3)
as_type = count_errors(ser, 'int32')
assert as_type.nbr_different == 0
as_type = count_errors(ser, 'int16')
assert as_type.nbr_different == 3
as_type = count_errors(ser, 'int8')
assert as_type.nbr_different == 3
if __name__ == "__main__":
print("Given a dataframe, check for lowest possible conversions:")
nbr_rows = 100
df = pd.DataFrame()
df['a'] = [0] * nbr_rows
df['b'] = [256] * nbr_rows
df['c'] = [65_536] * nbr_rows
df['d'] = [1_100.0] * nbr_rows
df['e'] = [100_101.0] * nbr_rows
df['str_a'] = ['hello'] * nbr_rows
df['str_b'] = [str(n) for n in range(nbr_rows)]
report_on_dataframe(df)
print("convert_dtypes does a slightly different job:")
print(df.convert_dtypes())