Skip to content

🥭 MANGO: Maximization of neural Activation via Non-Gradient Optimization

License

Notifications You must be signed in to change notification settings

iabs-neuro/mango

Repository files navigation

🥭MANGO - Maximization of neural Activation via Non-Gradient Optimization

MANGO framework

Description

Software product for analysis of activations and specialization in artificial neural networks (ANN), including spiking neural networks (SNN), with the tensor train (TT) decomposition and other gradient-free methods.

Installation

  1. Install python (version 3.8; you may use anaconda package manager);

  2. Create a virtual environment:

    conda create --name mango python=3.8 -y
  3. Activate the environment:

    conda activate mango
  4. install pytorch with specific cuda toolkit version

    conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
  5. (optional) install cupy for cudnn-based GPU acceleration for SNNs

    conda install -c conda-forge cupy cudnn cutensor
  6. Install dependencies:

    pip install jupyterlab "jax[cpu]" optax teneva ttopt protes snntorch spikingjelly matplotlib nevergrad requests urllib3

Usage

Run python manager.py ARGS, then see the outputs in the terminal and results in the result folder. Before starting the new calculation, you can completely delete or rename the result folder. A new result folder will be created automatically in this case.

To run the code on the cluster, we used the zhores_run.sh bash script (in this case, the console output will be saved in a file zhores_out.txt).

Supported combinations of the manager.py script arguments:

  • python manager.py --data cifar10 --task check --kind data

  • python manager.py --data imagenet --task check --kind data

  • python manager.py --data cifar10 --model densenet --task check --kind model --c 0

  • python manager.py --data imagenet --model vgg19 --task check --kind model --c 0

  • python manager.py --data cifar10 --gen vae_vq --model densenet --task train --kind gen

  • python manager.py --data cifar10 --gen vae_vq --model densenet --task check --kind gen

  • python manager.py --data cifar10 --gen gan_sn --model densenet --task check --kind gen

  • python manager.py --data cifar10 --gen vae_vq --model densenet --task am --kind class --c 0

    Classes may be 0, 1, ..., 9

  • python manager.py --data cifar10 --gen gan_sn --model densenet --task am --kind class --c 0

    Classes may be 0, 1, ..., 9

Authors

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •