Kfashion Style classifier - Multi Label classification
EfficientNet Model Architecture
Activation Map
Asymmetric Loss Description
Formula
Comparison
python V # python version : 3.8.13
dgl==0.9.1
tqdm
torch==1.9.1
torchvision==0.10.1
torchaudio==0.9.1
torchtext==0.10.1
dask
partd
pandas
fsspec==0.3.3
scipy
sklearn
The install cmd is:
conda create -n your_prjname python=3.8
conda activate your_prjname
cd {Repo Directory}
pip install -r requirements.txt
your_prjname : Name of the virtual environment to create
If you want to proceed with the new training, adjust the parameters and set the directory and proceed with the command below.
The Training cmd is:
The testing cmd is:
python3 Inference_inspection_kfashiontest.py
The inference cmd is:
testset fashion category
Model
Class Num
Testset Num
Top3 Recall
Global Convolutional Network
10
41,178
91.1%
EfficientNet
23
118,483
95.5%
Class
Number
Top3 Recall
preppy
1,218
89.8%
resort
29,757
94.0%
punk
389
91.9%
classic
14,809
91.4%
military
1,656
95.4%
sporty
6,710
94.4%
retro
3,512
93.5%
oriental
1,704
90.6%
country
13,792
93.1%
hiphop
1,254
88.0%
hippy
2,644
93.8%
avantgarde
1,576
89.8%
modern
31,242
93.6%
romantic
28,976
95.0%
manish
3,382
88.2%
genderless
6,003
92.8%
kitsch
2,858
90.6%
tomboy
3,921
88.7%
street
134,410
97.5%
feminine
34,652
93.9%
western
665
88.7%
sophisticated
11,960
91.9%
sexy
3,714
90.8%