Huicong Zhang1, Haozhe Xie2, Shengping Zhang1, Hongxun Yao1
1Harbin Institute of Technology, 2S-Lab, Nanyang Technological University
- [2024/12/20] The training and testing code are released.
We use the GoPro, BSD and DVD datasets in our experiments, which are available below:
You could download the zip file and then extract it to the datasets folder.
You could download the pretrained model from here and put the weights in model_zoos.
If you prepare your own dataset, please follow the following form like GOPRO/DVD/BSD:
|--dataset
|--blur
|--video 1
|--frame 1
|--frame 2
:
|--video 2
:
|--video n
|--gt
|--video 1
|--frame 1
|--frame 2
:
|--video 2
:
|--video n
git clone https://github.com/huicongzhang/STDANetPP.git
conda create -n STDANetPP python=3.8
conda activate STDANetPP
conda install pytorch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install -U openmim
mim install mmcv-full
pip install -r requirements.txt
BASICSR_EXT=True python setup.py develop
cd basicsr/ops/mda
python setup.py build install
To test STDANetPP, you can simply use the following commands:
GoPro dataset
python basicsr/test.py -opt options/test/STDANetPP_gopro.yml
DVD dataset
python basicsr/test.py -opt options/test/STDANetPP_dvd.yml
BSD(1ms_8ms) dataset
python basicsr/test.py -opt options/test/STDANetPP_bsd1.yml
BSD(2ms_16ms) dataset
python basicsr/test.py -opt options/test/STDANetPP_bsd2.yml
BSD(3ms_24ms) dataset
python basicsr/test.py -opt options/test/STDANetPP_bsd3.yml
To train STDANetPP, you can simply use the following commands:
GoPro dataset
scripts/dist_train.sh 2 options/train/STDANetPP_gopro.yml
DVD dataset
scripts/dist_train.sh 2 options/train/STDANetPP_dvd.yml
BSD(1ms_8ms) dataset
scripts/dist_train.sh 2 options/train/STDANetPP_bsd1.yml
BSD(2ms_16ms) dataset
scripts/dist_train.sh 2 options/train/STDANetPP_bsd2.yml
BSD(3ms_24ms) dataset
scripts/dist_train.sh 2 options/train/STDANetPP_bsd3.yml
This project is open sourced under MIT license.
This project is based on BasicSR, ProPainter and RVRT.