-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathLoadRLModel.py
345 lines (296 loc) · 13.7 KB
/
LoadRLModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# --- Do not remove these libs ---
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from freqtrade.strategy.interface import IStrategy
# --------------------------------
# Add your lib to import here
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
from stable_baselines import ACER
# This class is a sample. Feel free to customize it.
class LoadRLModel(IStrategy):
stoploss = -0.50
trailing_stop = False
ticker_interval = '5m'
# Run "populate_indicators()" only for new candle.
process_only_new_candles = False
startup_candle_count: int = 20
model = ACER.load('model')
def informative_pairs(self):
return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Momentum Indicators
# ------------------------------------
# ADX
dataframe['adx'] = ta.ADX(dataframe)
# Plus Directional Indicator / Movement
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# # Minus Directional Indicator / Movement
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Aroon, Aroon Oscillator
aroon = ta.AROON(dataframe)
dataframe['aroonup'] = aroon['aroonup']
dataframe['aroondown'] = aroon['aroondown']
dataframe['aroonosc'] = ta.AROONOSC(dataframe)
# Awesome Oscillator
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
# # Keltner Channel
# keltner = qtpylib.keltner_channel(dataframe)
# dataframe["kc_upperband"] = keltner["upper"]
# dataframe["kc_lowerband"] = keltner["lower"]
# dataframe["kc_middleband"] = keltner["mid"]
# dataframe["kc_percent"] = (
# (dataframe["close"] - dataframe["kc_lowerband"]) /
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
# )
# dataframe["kc_width"] = (
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
# )
# Ultimate Oscillator
dataframe['uo'] = ta.ULTOSC(dataframe)
# Commodity Channel Index: values [Oversold:-100, Overbought:100]
dataframe['cci'] = ta.CCI(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
# Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# Stochastic Slow
stoch = ta.STOCH(dataframe)
dataframe['slowd'] = stoch['slowd']
dataframe['slowk'] = stoch['slowk']
# Stochastic Fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# Stochastic RSI
stoch_rsi = ta.STOCHRSI(dataframe)
dataframe['fastd_rsi'] = stoch_rsi['fastd']
dataframe['fastk_rsi'] = stoch_rsi['fastk']
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# # ROC
dataframe['roc'] = ta.ROC(dataframe)
# Overlap Studies
# ------------------------------------
# # Bollinger Bands
# bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
# dataframe['bb_lowerband'] = bollinger['lower']
# dataframe['bb_middleband'] = bollinger['mid']
# dataframe['bb_upperband'] = bollinger['upper']
# dataframe["bb_percent"] = (
# (dataframe["close"] - dataframe["bb_lowerband"]) /
# (dataframe["bb_upperband"] - dataframe["bb_lowerband"])
# )
# dataframe["bb_width"] = (
# (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
# )
# # Bollinger Bands - Weighted (EMA based instead of SMA)
# weighted_bollinger = qtpylib.weighted_bollinger_bands(
# qtpylib.typical_price(dataframe), window=20, stds=2
# )
# dataframe["wbb_upperband"] = weighted_bollinger["upper"]
# dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
# dataframe["wbb_middleband"] = weighted_bollinger["mid"]
# dataframe["wbb_percent"] = (
# (dataframe["close"] - dataframe["wbb_lowerband"]) /
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
# )
# dataframe["wbb_width"] = (
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) /
# dataframe["wbb_middleband"]
# )
# # EMA - Exponential Moving Average
# dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
# dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
# dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
# dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
# dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
# dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# # SMA - Simple Moving Average
# dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
# dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
# dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
# dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
# dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
# dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)
# Parabolic SAR
# dataframe['sar'] = ta.SAR(dataframe)
# TEMA - Triple Exponential Moving Average
# dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
# # Cycle Indicator
# # ------------------------------------
# # Hilbert Transform Indicator - SineWave
# hilbert = ta.HT_SINE(dataframe)
# dataframe['htsine'] = hilbert['sine']
# dataframe['htleadsine'] = hilbert['leadsine']
# # Pattern Recognition - Bullish candlestick patterns
# # ------------------------------------
# # Hammer: values [0, 100]
# dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# # Inverted Hammer: values [0, 100]
# dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# # Dragonfly Doji: values [0, 100]
# dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# # Piercing Line: values [0, 100]
# dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# # Morningstar: values [0, 100]
# dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# # Three White Soldiers: values [0, 100]
# dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
# # Pattern Recognition - Bearish candlestick patterns
# # ------------------------------------
# # Hanging Man: values [0, 100]
# dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# # Shooting Star: values [0, 100]
# dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# # Gravestone Doji: values [0, 100]
# dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# # Dark Cloud Cover: values [0, 100]
# dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# # Evening Doji Star: values [0, 100]
# dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# # Evening Star: values [0, 100]
# dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
# # Pattern Recognition - Bullish/Bearish candlestick patterns
# # ------------------------------------
# # Three Line Strike: values [0, -100, 100]
# dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# # Spinning Top: values [0, -100, 100]
# dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# # Engulfing: values [0, -100, 100]
# dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# # Harami: values [0, -100, 100]
# dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# # Three Outside Up/Down: values [0, -100, 100]
# dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# # Three Inside Up/Down: values [0, -100, 100]
# dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
# # Chart type
# # ------------------------------------
# # Heikin Ashi Strategy
# heikinashi = qtpylib.heikinashi(dataframe)
# dataframe['ha_open'] = heikinashi['open']
# dataframe['ha_close'] = heikinashi['close']
# dataframe['ha_high'] = heikinashi['high']
# dataframe['ha_low'] = heikinashi['low']
# Retrieve best bid and best ask from the orderbook
# ------------------------------------
"""
# first check if dataprovider is available
if self.dp:
if self.dp.runmode in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
"""
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
# dataframe.loc[
# (
# (qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
# (dataframe['tema'] <= dataframe['bb_middleband']) & # Guard: tema below BB middle
# (dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising
# (dataframe['volume'] > 0) # Make sure Volume is not 0
# ),
# 'buy'] = 1
action, nan_list = self.rl_model_redict(dataframe)
dataframe.loc[action == 1, 'buy'] =1
dataframe.loc[nan_list == True, 'buy'] = 0
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
# dataframe.loc[
# (
# (qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
# (dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle
# (dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling
# (dataframe['volume'] > 0) # Make sure Volume is not 0
# ),
# 'sell'] = 1
action, nan_list = self.rl_model_redict(dataframe)
dataframe.loc[action == 2, 'sell'] =1
dataframe.loc[nan_list == True, 'sell'] = 0
return dataframe
def rl_model_redict(self, dataframe):
data = np.array([
dataframe['adx'],
dataframe['plus_dm'],
dataframe['plus_di'],
dataframe['minus_dm'],
dataframe['minus_di'],
dataframe['aroonup'],
dataframe['aroondown'],
dataframe['aroonosc'],
dataframe['ao'],
# dataframe['kc_percent'],
# dataframe['kc_width'],
dataframe['uo'],
dataframe['cci'],
dataframe['rsi'],
dataframe['fisher_rsi'],
dataframe['slowd'],
dataframe['slowk'],
dataframe['fastd'],
dataframe['fastk'],
dataframe['fastd_rsi'],
dataframe['fastk_rsi'],
dataframe['macd'],
dataframe['macdsignal'],
dataframe['macdhist'],
dataframe['mfi'],
dataframe['roc'],
# row['bb_percent'],
# row['bb_width'],
# row['wbb_percent'],
# row['wbb_width'],
# dataframe['htsine'],
# dataframe['htleadsine'],
# row['CDLHAMMER'],
# row['CDLINVERTEDHAMMER'],
# row['CDLDRAGONFLYDOJI'],
# row['CDLPIERCING'],
# row['CDLMORNINGSTAR'],
# row['CDL3WHITESOLDIERS'],
# row['CDLHANGINGMAN'],
# row['CDLSHOOTINGSTAR'],
# row['CDLGRAVESTONEDOJI'],
# row['CDLDARKCLOUDCOVER'],
# row['CDLEVENINGDOJISTAR'],
# row['CDLEVENINGSTAR'],
# row['CDL3LINESTRIKE'],
# row['CDLSPINNINGTOP'],
# row['CDLENGULFING'],
# row['CDLHARAMI'],
# row['CDL3OUTSIDE'],
# row['CDL3INSIDE'],
# trad_status,
# (self.trade != None)
], dtype=np.float)
data = data.reshape(-1, 24)
nan_list = np.isnan(data).any(axis=1)
data = np.nan_to_num(data)
action, _ = self.model.predict(data, deterministic=True)
return action, nan_list